

Mixer Diodes Millimeter??

NORTH TEXAS MICROWAVE SOCIETY

April 13, 2019

Chuck Clark, AF8Z

Goal: Make a MMW Mixer for ??

- How to use existing Avago Diodes to get a upconverter/downconverter.
- Diodes need to be solderable, SOT23, SOT143, SOT363
 - Pkg model HP AN1124
- Diodes: HSMS-282x C case style for antiparallel pair (harmonic mixing.).

Where to Start?

 $I_D = I_S \left(\frac{qV_D}{nkT} - 1 \right)$

Ideal Diode Equation

Where

 I_D and V_D are the diode current and voltage, respectively q is the charge on the electron

n is the ideality factor: n = 1 for indirect semiconductors (Si, Ge, etc.) n = 2 for direct semiconductors (GaAs, InP, etc.)

k is Boltzmann's constant

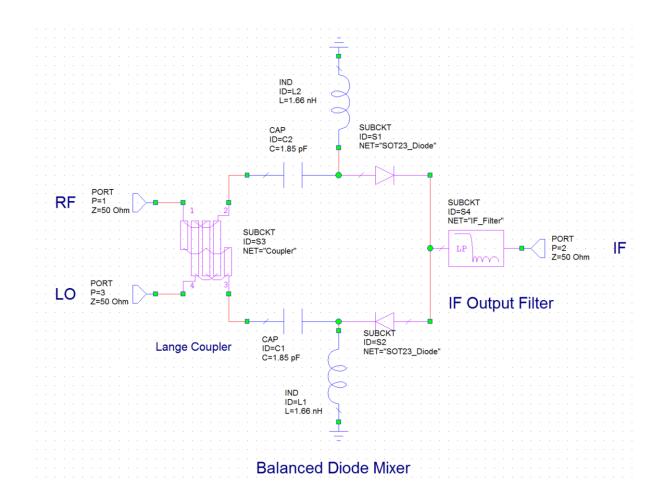
T is temperature in Kelvin

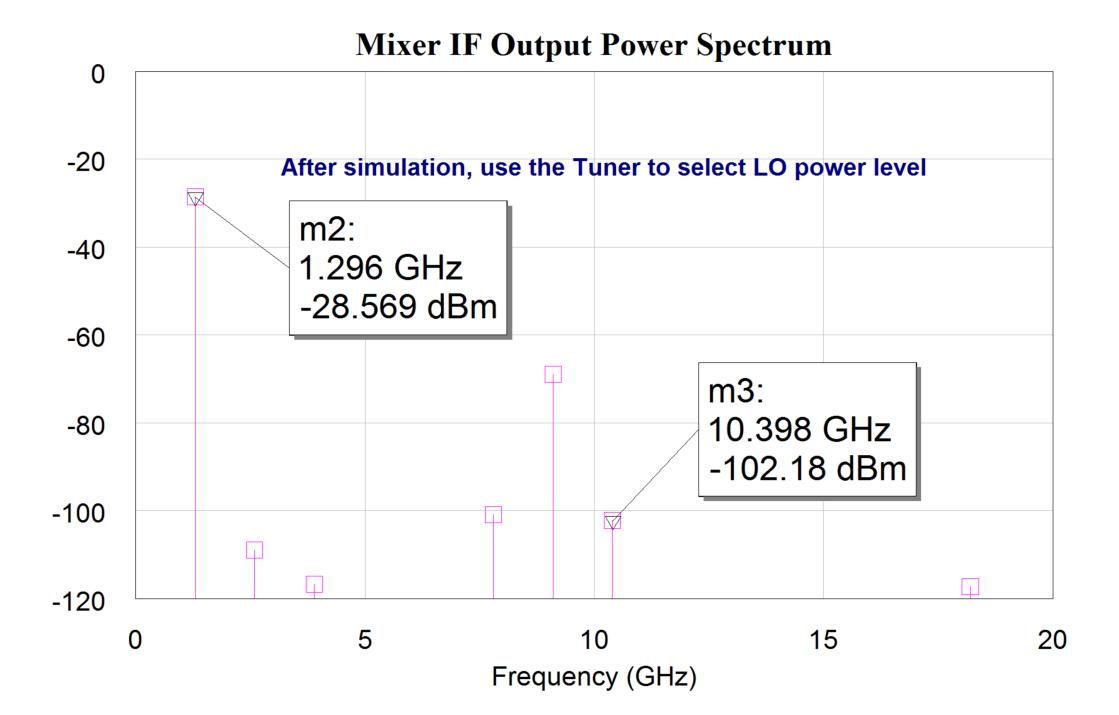
kT/q is also known as V_{th} , the thermal voltage. At 300K (room temperature), kT/q = 25.9mV

Simplification

• When V_D is negative

$$I_D \sim -I_S$$

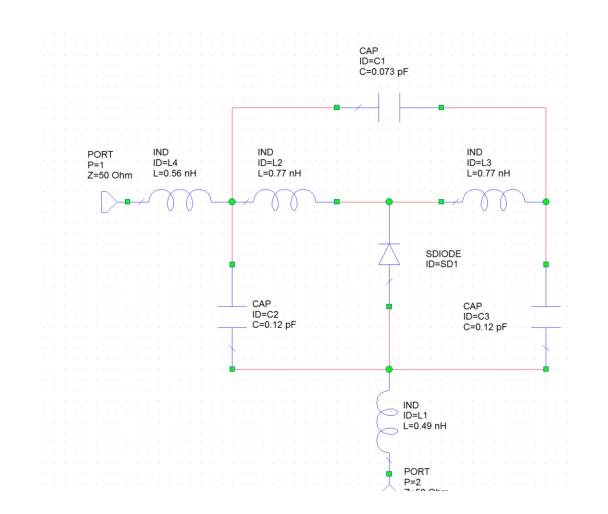

• When V_D is positive


$$I_D \sim I_S e^{\frac{qV_D}{nkT}}$$

Where to Start?

- Microwave Office: Has a Diode Mixer Example file....
 - Uses SOT23 diode package
 - Balanced (quad hybrid) to isolate LO and RF
 - Frequency 4.25 GHz
 - Lange Coupler allows easy change in frequency.

MWO Model



Results

- Input Signal -10 dBm....If selected to be 1296 MHz
- Loss

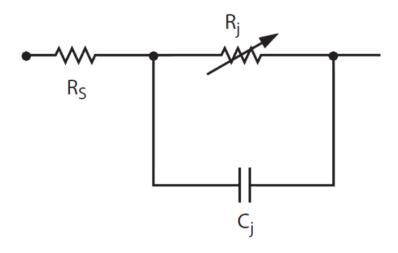
Frequency GHz	Loss dB
4.25	9.7
6.25	9.7
8.25	12.7
10.398	18.6 29.8 after fixing HMSX282x model

Why Does it fall apart at 10 GHz

The 4 inductors cause almost all of the excess loss!

The diode model hasn't been eliminated yet.

SC-79 package, smaller lower inductance?


Beam Lead?

Diode Parameters

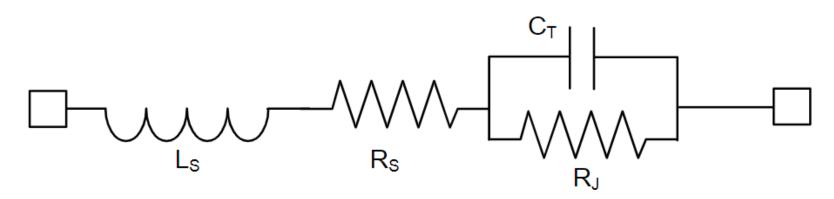
SPICE Parameters

Parameter	Units	HSMS-282x
B _v	V	15
C _{J0}	pF	0.7
E _G	eV	0.69
l _{BV}	А	1E-4
I _s	А	2.2E-8
Ν		1.08
R _s	Ω	6.0
P _B	V	0.65
P _T		2
М		0.5

Linear Equivalent Circuit Model Diode Chip

 $R_{s} = \text{series resistance (see Table of SPICE parameters)}$ $C_{j} = \text{junction capacitance (see Table of SPICE parameters)}$ $R_{j} = \frac{8.33 \times 10^{-5} \text{ nT}}{I_{b} + I_{s}}$

More Complete Spice Diode Model


Name	Value	Unit	Tune	Optimize	Constrain	Lower	Upper	Step Size	Use Statistics	Yield Optimize	Tolerance	Distribution	rolerance2	Hide	Hide Label	Description
ID	SD1															Diode ID
IS	1e-14	mA							(m)					1	(m)	Reverse saturation current
JSW	0	mA												1		Periphery reverse saturation current
MULT	1.0	11174												v		Scaling factor
AFAC	1													v		Junction area
PJFAC	0.0													V		Junction periphery
RS	11	Ohm												1		Series resistance
Ν	1.115													1		Bottom ideality factor
П	0	US								(****)						Storage time
C30	0	pF		(m)					[m]	(m)				1		Zero-voltage bottom junction capacitance
CJP	0	pF														Zero-voltage periphery junction capacitance
/3	1	mV												1		Bottom built-in voltage
PHP	800	mV												1		Periphery built-in voltage
4	0.5	IIIV												v		
	0.33													V		Bottom junction grading coefficient
WSCN																Periphery junction grading coefficient
C	0.5													1		Bottom depletion capacitance linearization parameter
CS	0.5								(m)					1		Periphery depletion capacitance linearization parameter
8V	15000	mV												1		Breakdown voltage
BV	0.0005	mA	1						(m)	(m)				1		Current at breakdown voltage
KF	0	mA														Forward knee current
KR.	0	mA												v		Reverse knee current
G	1.11													v		Energy gap @ TNOM; default is Si
ITI	3.0															Temp scaling coefficient; default is Si PN
EXT	26.85	DegC												V		Temperature at which diode params were determined
	27	DegC												1		Temperature
F	0															Flicker noise coefficient
F	1.0		(m)	(m)						(m)				1		Flicker noise exponent
FE	1.0													1		Flicker noise frequency exponent
B	0.0													V		Burst noise coefficient
B	1.0															Burst noise exponent
В	1.0													1		Burst noise cutoff frequency
IFLAG	Spice Model													1		Noise model
CAP	1													1		Capacitance model selector
LEV	0		(m)						(m)					1		I/V temperature model
LEVC	0													V		Capacitance temperature model
TA	0.0													v		Temperature coefficient for CJ0
CTP	0.0													v		Temperature coefficient for CJP
SAP1	7.02E-4													V		First bandgap correction factor
SAP2	1108													1		Second bandgap correction factor
CV	0.0								(mm)					1		Breakdown voltage temperature coefficient
M1	0.0															First-order temperature coefficient for M
M2	0.0													1		Second-order temperature coefficient for M
PB	0.0													v		Temperature coefficient for VJ
PD														V		
	0.0															Temperature coefficient for PHP
RS	0.0													v		Parasitic resistance temperature coefficent
TT1	0.0													1		First-order temperature coefficient for TT
TT2	0.0															Second-order temperature coefficient for TT
XAM	1e+006	mA	(m)						(m)							Maximum device current (for improving convergence)
	AWR															Model compatibility selector
IS														v		Periphery ideality factor
SW		Ohm												V		Sidewall series resistance
		Unm														
IZ			_	_	-											Emission coefficient for Zener diode
RS2	0.0									(m)						Quadratic temperature coefficient for parasitic resist
LEAK		S												1		Bottom junction leakage conductance
LEAKSW		S														Sidewall junction leakage conductance
GS	0.0													V		Linear temperature coefficient for leakage conductan
GS2	0.0													1		Quadratic temperature coefficient for leakage condu
		-5												v		
D	0	pF														Linear capacitance
SR	0	mA												V		Recombination current
IR.	2.0								(m)					1		Recombination current ideality factor
TUN	0	mA														Tunneling saturation current per area
ITUN														1		Reverse tunneling new ideality factor
ŒG														v		EG correction factor for tunneling
TITUN														V		Exponent for the tunneling current temperature
GTUN			-	-	-				_	-				1		Tunneling Energy gap @ TNOM
TUNSW	0	mA								(TT)						Sidewall tunneling saturation current per unit iunction

MA4E2502 Series

SURMOUNT™ Low, Medium, and High Barrier Silicon Schottky Diodes

MA4E2502 Diode Schematic

Schematic Values

Model Number	Ls (nH)	Rs (Ω)	Rj (Ω)	Ct (pF)
MA4E2502L	0.45	12.8	26 / Idc (mA)	0.10
MA4E2502M	0.45	9.6	26 / Idc (mA)	0.10
MA4E2502H	0.45	6.5	26 / Idc (mA)	0.10

Rev. V2

MA4E2502 Series

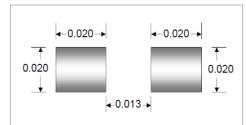
SURMOUNT™ Low, Medium, and High

Barrier Silicon Schottky Diodes

Rev. V2

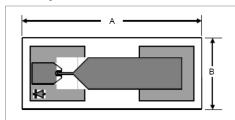
MA4E2502L Low Barrier SPICE PARAMETERS

ls (nA)	Rs (Ω)	N	Cj0 (pF)	М	lk (mA)	Cjpar (pF)	Vj (V)	FC	BV (V)	IBV (mA)
26	12.8	1.20	1.0 E-2	0.5	14	9.0 E-2	8.0 E-2	0.5	5.0	1.0 E-2


MA4E2502M Medium Barrier SPICE PARAMETERS

(ls [mA)	Rs (Ω)	N	Cj0 (pF)	М	lk (mA)	Cjpar (pF)	Vj (V)	FC	BV (V)	IBV (mA)
5	5 E-1	9.6	1.20	1.0 E-02	0.5	10	9.0 E-2	8.0 E-2	0.5	5.0	1.0 E-2

MA4E2502H High Barrier SPICE PARAMETERS


ls (mA)	Rs (Ω)	N	Cj0 (pF)	М	lk (mA)	Cjpar (pF)	Vj (V)	FC	BV (V)	IBV (mA)
5.7 E-1	6.5	1.20	1.0 E-02	0.5	4	9.0 E-2	8.0 E-2	0.5	5.0	1.0 E-2

Circuit Mounting Dimensions (Inches)

4

Case Style 1246

DIM.	INC	HES	MILLIMETERS			
Dim.	MIN.	MIN. MAX.		MAX.		
А	0.0445	0.0465	1.130	1.180		
В	0.0169	0.0189	0.430	0.480		
С	0.0040	0.0080	0.102	0.203		
D Sq.	0.0128	0.0148	0.325	0.375		
E	0.0128	0.0148	0.325	0.375		

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

AmScope 3.5X-90X Zoom Trinocular Stereo Microscope with Table Pillar Stand Brand New 20 product ratings

\$286.99 List price: \$545.99 Buy It Now Free Shipping **975 Sold 47% off** 3 new & refurbished from \$264.59

Guaranteed by **Tue**, **Apr. 2**

AmScope 7X-45X Circuit Inspection Trinocular Zoom Stereo Microscope with 56-LED Brand New

\$496.99 List price: \$945.99 Buy It Now **Free Shipping 128 Watching 47% off** 2 new & refurbished from \$496.99

Guaranteed by **Tue, Apr. 2**

Less Expensive Sources!

Ð

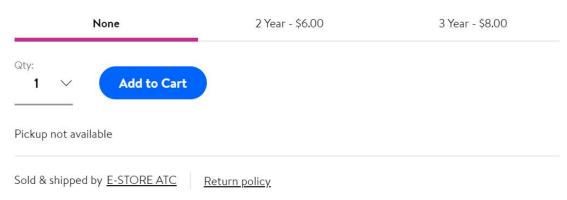
▼ Search

Industrial & Scientific / Telescopes and Microscopes / Microscopes

600X 4.3" LCD Display 3.6MP Electronic Digital Video Microscope Portable LED Magnifier with Metal Stand for Mobile Phone Maintenance

Write a review KKmoon

\$65.98


Only 7 left!

Free shipping

Arrives by Tuesday, Apr 16 Options

Add a Walmart Protection Plan powered by Allstate

Q

a 8 0 b

f 🦻 🎽

Results

- Input Signal -10 dBm....If selected to be 1296 MHz
- Loss

Frequency GHz	Loss dB
4.25	9.7
6.25	9.7
8.25	12.7
10.398	18.6 29.8 after fixing HMSX282x model 10.4 using MA4E2502L diode

MA4Exxxx Series

GaAs Flip Chip Schottky Barrier Diodes

Rev. V11

Electrical Specifications @ +25°C

Parameters and Test Conditions	Symbol	Units	I	MA4E1317	7		MA4E1318	3
Parameters and Test Conditions	Symbol	Units	Min.	Тур.	Max.	Min.	Тур.	Max.
Junction Capacitance at 0 V at 1 MHz	Cj	pF	-	.020	-	-	.020 ³	-
Total Capacitance at 0 V at 1 MHz ¹	Ct	pF	.030	.045	.060	.030 ³	.045 ³	.060 ³
Junction Capacitance Difference	DCj	pF	-	-	-	-	.005	.010
Series Resistance at +10 mA ²	Rs	Ohms	-	4	7	-	4	7
Forward Voltage at +1 mA	Vf1	Volts	.60	.70	.80	.60	.70	.80
Forward Voltage Difference at +1 mA	DVf	Volts	-	-	-	-	.005	.010
Reverse Breakdown Voltage at $-10 \ \mu A$	Vbr	Volts	4.5	7	-	-	-	-
SSB Noise Figure	NF	dB	-	6.5 ⁴	-	-	6.5 ⁴	-

Parameters and Test Conditions	Symbol	Units	MA	4E1319-1 (or -2	I	MA4E2160)
Farameters and Test Conditions	Symbol	Offics	Min.	Тур.	Max.	Min.	Тур.	Max.
Junction Capacitance at 0 V at 1 MHz	Cj	pF	-	.020 ³	-	-	-	.020 ³
Total Capacitance at 0 V at 1 MHz ¹	Ct	pF	.030 ³	.045 ³	.060 ³	.060 ³	.030 ³	.045 ³
Junction Capacitance Difference	DCj	pF	-	.005	.010	.010	-	.005
Series Resistance at +10 mA ²	Rs	Ohms	-	4	7	7	-	4
Forward Voltage at +1 mA	Vf1	Volts	.60	.70	.80	.80	.60	.70
Forward Voltage Difference at +1 mA	DVf	Volts	-	.005	.010	.010	-	.005
Reverse Breakdown Voltage at $-10 \ \mu A$	Vbr	Volts	4.5	7	-	-	4.5	7
SSB Noise Figure	NF	dB	-	6.5 ⁴	-	-	-	6.5 ⁴

• Still about \$2.00

- Even smaller.....
- Special solder/epoxy to mount
- Vendor claims 80 GHz performance.
- Why it works:
 - Low junction capacitance
 - Low series inductance

For the Massocist.

VIRGINIA Diodes Inc.

DIODE SPECIFICATION

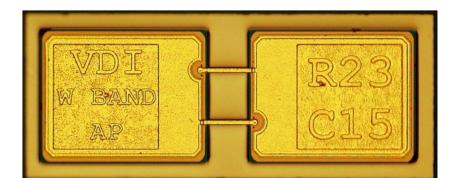
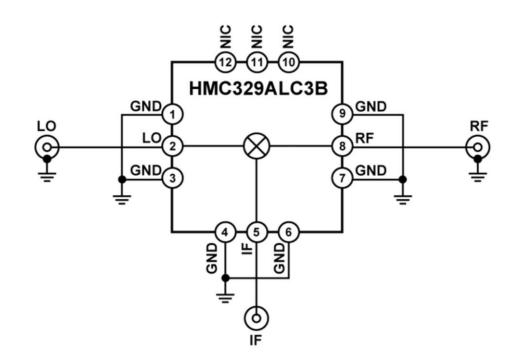

W Band Anti-Parallel

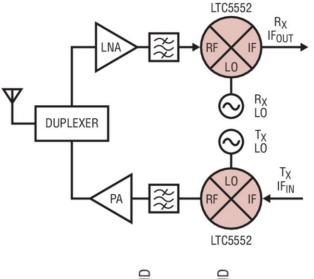
Table I ELECTRICAL CHARACTERISTICS

	Test Conditions	Minimum Value	Maximum Value	$\begin{array}{l} \text{Maximum } \delta \\ \text{side to side} \end{array}$	Units
R _s Series Resistance	I _{max} =10 mA		4	0.5	Ω
V _F Forward Turn-on Voltage	Ι _F = 1 μΑ	470	520	10	mV
ΔV	100 μΑ – 10 μΑ		70	1	mV
C⊤ Total Capacitance Both Anodes	V = 0V	56	62	N/A	fF
C _{PP} Pad to Pad Capacitance	V = 0V		15		fF

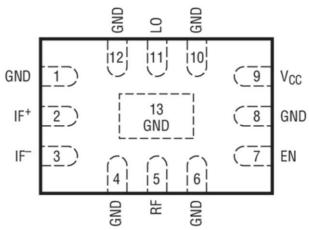
Table II PHYSICAL DIMENSIONS


	Minimum Value	Maximum Value	Units
Chip Length	580	630	μm
Chip Width	230	280	μm
Substrate Thickness	90	100	μm

- These are very EDS sensitive.
- There are higher frequency diodes, try Hughes Research, tunnel/back diodes.

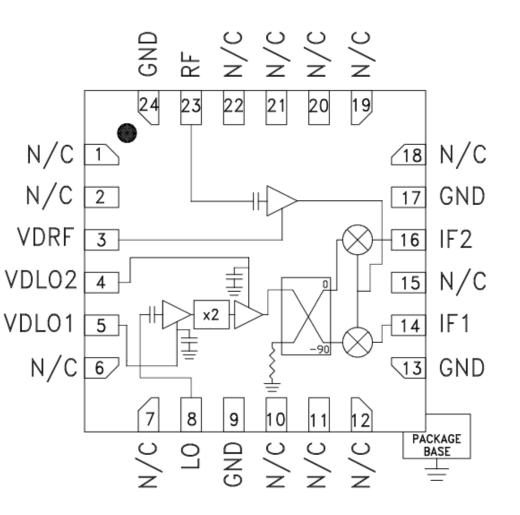

Alternative Approach

- Let the semiconductor vendor do the hard stuff...
 - Diode mounting
 - Quadrature hybrid.



24-32 GHz input DC-8 GHz IF
11 dB conversion loss
20 dBm IIP3
9 dBm LO
3mmx3mm LCC Package
That damn soldering
problem again.

Others


3-20 GHz RF Range DC-6 GHz IF
0 dBm LO drive
8 dB conversion loss
\$44.00 Mouser
118x78 mils

UDB PACKAGE 12-LEAD (3mm × 2mm) PLASTIC QFN

I/Q Well We do Want Direct Conversion!

- 21-24 GHz IF DC-3.5GHz
- Conversion Gain 15 dB
- LO Multiplication
- 4x4mm package
- HMC967LP4E
- \$35.42
- HMC7912 matching up converter

Higher Bands


- OOPS ! They are die
 - Epoxy parts down
 - Wire bond.
 - I am known to be bad at wirebonding.
 - Some techs are quite good on primitive equipment....

Soldering Tools

• My First

Soldering in College

Current Tools

For The Next Level

Price

Under \$350.00

\$350.00 - \$3,500.00

Over \$3,500.00

West Bond 7316A Wire Bonder

Pre-Owned

\$999.99

Buy It Now +\$52.73 shipping Guaranteed by Fri, Apr. 19

References

- https://www.microwaves101.com/encyclopedias/branchline-couplers
- MWO Examples Diode Mixer
- <u>https://filebox.ece.vt.edu/~LiaB/ECE2204/Lectures/Diodes/Ideal%20</u>
 <u>Diode%20Equation.pdf</u>
- HP AN1124