

122 GHz Progress using VK3CV Transceiver

KM5PO Jim McMasters December 4, 2021

What is it?

- Not your usual transverter
 - Complete 122 GHz transmitter on PCB
 - Receive down converter & IF amp on PCB
- Minimum configuration
 - Power (12 v battery)
 - Control switches, morse key
 - IF receiver (144 MHz) or SDR

122 GHz VK3CV board & antennas

Functional process

Add peripherals

Initial check out

- Power up and check for
 - Proper LED operation
 - Start RED then GREEN in RX mode Red in TX
 - Flashing RED=no PLL lock
 - Alt RED/GREEN=low DC voltage
 - Proper VCO test point frequency
 - 1.911 815 = pretty darn close
 - Add RS-232
 - Diag output
 - Change /B string

e COM5 - PuTTY
** 122G_003 VK3CV / WQ15 **
VERSION # 122G_003_20F3006
BEACON = test de km5po/b test
BEACON CARRIER DELAY = 1E
CHANNEL E DATA = 10 72 01 17 DD 88 10 72 01 17 E3 2C $$
ER TU REFV EC VCOV DCIN
01 E1D6 0046 FF 01E1 016A >_

W5HN

Transmit-receive test

• 10 meters DX

- Hallway
- RTL-SDR IF
- CW
- ~30dB s/n
- +/- 300 hz drift

- 300 meters DX
 - Across Lake Carolyn
 - IF=FT290 in a bag..
 - FM beacon
 - S8 full quieting

SDR ++ (www.sdrpp.org)

RTL-SDR receiver and SDR ++ software

Multi VFO

- Wide hardware support (both through SoapySDR and dedicated modules)
- SIMD accelerated DSP
- Cross-platform (Windows, Linux, OSX and BSD)
- Full waterfall update when possible.
- Modular design (write your own plugins)
- Seems not as sensitive for what we need in weak signal work but convenient in the shop versus dedicating a regular IF rig.

Implementing the board

- Determine configurations
 - Modify all units for external 10 MHz ref.
 - Internal VCTXCO would probably work although CW signals drift
 - Using GPS reference can present some issues
 - Build a Beacon unit
 - Power by internal LIPO 8 AH no batt charge circuit
 - Aluminum bar stock to support PCB
 - Permits access to both sides of PCB but also exposes PCB to possible hazards
 - Add all switching/mic/key/sidetone items
 - Use as a pattern for remaining units
 - Build remote controlled units #1 & #2
 - Use beacon as pattern for control unit add batt charge circuit
 - Use DB15 and cable for signaling with remote head unit

Beacon "build"

 \times

** 122G_003 VK3CV / WQ1S **

VERSION # 122G_003_20F3006

BEACON = test de km5po/b test

BEACON CARRIER DELAY = 1E

CHANNEL E DATA = 10 72 01 17 DD 88 10 72 01 17 E3 2C

ER TU REFV EC VCOV DCIN

01 E1D6 0046 FF 01E1 016A >_

ER = GPS lock error result TU = Current 10 MHz VCTCXO ref error TU value REFV = Current 10 MHz VCTCXO ref tune voltage EC = VCTCXO error count since last correction (lock quality) VCOV = Current VCO error voltage DCIN = Current DC input voltage

North Texas NTMS Microwave Society

DB15 connectors, 9 conductor cable, two RG-174 coax cables.

Pin	Function
9-Wht	12vDC
10-Grn	RS232 rx
11-Grey	Sidetone
12-Vio/Blk	PTT in
13-Braid	GND-10 MHz
14-	N/C
15-RG174	hot-10 MHz

Control box and head

- RG-174U for RF signals
- Use color coding of connecting cable as reference to wiring control box/head.
- LED will be hidden when head is closed
- No provision for dynamic channel changing aside from A/B ie. 122500.400/122356.000

Build remote controlled unit

4.4

Table 5

Parameter DC Parameters Supply current consu DIVen input voltage,

120-GHz IQ Transceiver TRA 120 002

Electrical Characteristics

Electrical Characteristics

Preliminary Data Sheet Revision 0.8 2018-11-05

- Power applied and no LED action (at head) ARGGG!
- Test point measures -36 + 23 cor = -13 but 1.85 GHz
- 1.85 GHz not on the VCO tune curve but it is listed in specs
 - Rabbit hole (why parked at 1.85 GHz?):
 - Source code- why no init red LED
 - Did the initial freq set not occur?
 - After cleanup and fiddling with ref levels, now normal LED sequence but still on 1.85 GHz
 - Need a baseline of measurements from good rig!

	Symbol	Min	Тур	Max	ι	Jnit
						127
mption	Icc		128	155		127
				0.3 ×		126
	VDIVen_L	0		Vcc		125
	N/	0.7 ×		v		124
	V DIVen_H	Vcc		VCC	(ZH2	123
					<u>u</u>	

 $T_A = -40$ °C to +85 °C unless otherwise noted. Typical values measured at $T_A = 25$ °C and $V_{CC} = 3.3$ V.

low level		-		Vcc	125 F		
DIVen input voltage, high level	VDIVen_H	0.7 × Vcc		Vcc	124 123		
RXen input voltage, low level	V _{RXen_L}	0		0.5 × Vcc	0 /0 122 -		
RXen input voltage, high level	VRXen_H	Vcc -0.4		Vcc	121 - 120 -		
VCO tuning voltage	Vvt	0		Vcc	119		
RF Parameters					118 L		
VCO start frequency	ftx	117.8	119.3	120.8	0.0	0 0.5 1.0 1.5 2.0 2.5 3.0 Tuning Voltage (V)	3
VCO stop frequency	fтx	124.3	125.8	127.3	Figure 11	Full Bandwidth VCO Tuning	
VCO tuning full bandwidth	Δf _{TX}	5.5	6.5	7.5	inguic 11	Vt0, Vt1, Vt2, Vt3 are interconnected.	
Number adjustable of frequency bands			8			(Vt0 = Vt1 = Vt2 = Vt3)	_
Pushing VCO	Δf _{TX} /ΔVcc		27		MHz/V		
Phase noise	PN		-90	-88	dBc/Hz	at 1 MHz offset	
Transmitter output power	Ртх	-7	-3	1	dBm	Measured without antennas	
Divider ratio of TX signal	NDIV		64				
Divider output power	PDIV	-10		-7	dBm	Note 1	
Divider output frequency	foiv	1.85		1.98	GHz		
Receiver gain			8	10	dB	Measured without antennas	
IF frequency range	fir	0		200	MHz		
IF output impedance	Zout		500		Ω	Differential outputs	
IQ amplitude imbalance			tbd		dB		
IQ phase imbalance		-10		10	deg		
Noise figure (DSB)			8.7		dB	Simulated, at fi⊧ = 1 MHz)	
Input compression point	1dB ICP		-20		dBm	Measured without antennas	
Input compression point Note 1 Measured single-ended. D required in application.	1dB ICP	are loaded	-20 with 50 Ω, e	external de	dBm ecoupling ca	Measured without antennas apacitors are required. No 50-Ω match is	

Gilicon radar

Condition / Remark

WWW.NTMS.ORG

Test points

	Test	Note	power- raw plus correction	Voltage or resistance	Frequency
	122 GHz and 10 MHz ref DUTs	Beacon/Internal			
1	RF level of 10 MHz ref at end of hot cable	Follows intern. 7 db attn	-18 +27.5=5.5		
2	Voltage level of 10 MHz ref at end of hot cable			800mv pp	9.99996 MHz
3	RF level of 10 MHz ref at SMA input with pcb smd attenuation		-23.8+27.5=3.7		
4	Voltage level of 10 MHz ref at SMA input with pcb smd attenuation			440mv pp	9.99996 MHz
5	RF level of 10 MHz ref at shorts over R47/C47		-25.2+27.5=2.3		
6	Voltage level at R52 (PIC pin 37 RC3/SCK/SCL & PLL pin 11 CLK) in TX	s/b 0.7 - 3.3		2.63vDC	
7	Voltage level at R52 (PIC pin 37 RC3/SCK/SCL & PLL pin 11 CLK) in RX			164mvDC and .86mvAC	
8	RF level of 10 MHz ref at C200 (PIC pin 30 OSC1/CLKIN)		-25.2+27.5=2.3		
9	Voltage level of 10 MHz ref at C200 (PIC pin 30 OSC1/CLKIN)	s/b 1.4 - 3.3 (2v p-p ideal waveform)		1.45vDC and .86mvAC	ugly waveform?
10	RF level of 10 MHz ref at IC8 (probe C43)		-19.8+27.5=7.7		
11	Voltage level at C32/R53 (PLL pin 2 - RF chip pin 18/VT0)	s/b 1.4 - 3.3		1.58vDC	
12	Voltage level at R50/C33 (PLL pin 2/Cpout to PIC pin 22-RA3/AN3/VREF)[An VCOV] 1-2vDC indicates a lock	s/b 1 - 2v {1.3v} (this is DC component of VCO error voltage)		1.42vDC	
13	PIC pin 9 to ground (a/b switch line) resistance should change when hex switch moves from even to odd			0 to 1.4k and .86vAC	
14	RF test point level and frequency channel A (switch open)		-35+23= -12		1.911 GHz
15	RF test point level and frequency channel B (switch closed)		-35+23= -12		1.914 GHz
16	RF test point level and frequency channel A Beacon CW		-35+23= -12		1.911 to 1.914 GHz
17	RF test point level and frequency channel B Beacon FM		-35+23= -12		1.914 GHz
18	DC v across the morse key port	Andrew measured 3.298vDC		3.23vDC	
19	DC power in			12.96vDC	
20	Check spurs at test point and IF				

-North

Texas NTMS

Microwave Society

Test points

	Test	Note	power- raw plus correction	Voltage or resistance	Frequency
	122 GHz and 10 MHz ref DUTs	Beacon/Internal			
1	RF level of 10 MHz ref at end of hot cable	Follows intern. 7 db attn	-18 +27.5=5.5		
2	Voltage level of 10 MHz ref at end of hot cable			800mv pp	9.99996 MHz
3	RF level of 10 MHz ref at SMA input with pcb smd attenuation		-23.8+27.5=3.7		
4	Voltage level of 10 MHz ref at SMA input with pcb smd attenuation			440mv pp	9.99996 MHz
5	RF level of 10 MHz ref at shorts over R47/C47		-25.2+27.5=2.3		
6	Voltage level at R52 (PIC pin 37 RC3/SCK/SCL & PLL pin 11 CLK) in TX	s/b 0.7 - 3.3		2.63vDC	
7	Voltage level at R52 (PIC pin 37 RC3/SCK/SCL & PLL pin 11 CLK) in RX			164mvDC and .86mvAC	
8	RF level of 10 MHz ref at C200 (PIC pin 30 OSC1/CLKIN)		-25.2+27.5=2.3		
9	Voltage level of 10 MHz ref at C200 (PIC pin 30 OSC1/CLKIN)	s/b 1.4 - 3.3 (2v p-p ideal waveform)		1.45vDC and .86mvAC	ugly waveform?
10	RF level of 10 MHz ref at IC8 (probe C43)		-19.8+27.5=7.7		
11	Voltage level at C32/R53 (PLL pin 2 - RF chip pin 18/VT0)	s/b 1.4 - 3.3		1.58vDC	
12	Voltage level at R50/C33 (PLL pin 2/Cpout to PIC pin 22-RA3/AN3/VREF)[An VCOV] 1-2vDC indicates a lock	s/b 1 - 2v {1.3v} (this is DC component of VCO error voltage)		1.42vDC	
13	PIC pin 9 to ground (a/b switch line) resistance should change when hex switch moves from even to odd			0 to 1.4k and .86vAC	
14	RF test point level and frequency channel A (switch open)		-35+23= -12		1.911 GHz
15	RF test point level and frequency channel B (switch closed)		-35+23= -12		1.914 GHz
16	RF test point level and frequency channel A Beacon CW		-35+23= -12		1.911 to 1.914 GHz
17	RF test point level and frequency channel B Beacon FM		-35+23= -12		1.914 GHz
18	DC v across the morse key port	Andrew measured 3.298vDC		3.23vDC	
19	DC power in			12.96vDC	
20	Check spurs at test point and IF				

Next steps

- Make a real contact (AI & Scott, Paul Sarver-KI5EMN)
- Find max DX (horn to horn) improve systems/operating methods
- Implement dish and feed and maybe lens on one or both remote rigs

Finding LOS

- During darkness hours
- Use binoculars from high operating position looking for cars and familiar landmarks and traffic signals
- Mark or remember your position
- Plot a path
- In darkness hours install flashing light at high op position
- Drive to estimated locations and identify the flashing light.
- Try to improve the dx position.
- Document the location.

North

Texas

White flashing light at target 27.3 km DX

Lumina 1100 cycling light

White flashing light at apartment top floor parking lot -

More DX possibilities

Cedar Hill to Lone Star Rd (360) 10.5 km

Cedar Hill to Lillian/917 20.3 km

Cedar Hill to Windhaven 27.3 km

WWW.NTMS.ORG

Lots of resources

- Home page of NTMS website
 - 7 presentations for 122 GHz
 - Dec. 7, 2019 N5BRG VK3CV 122 GHz Transverter review
 - Mar. 7, 2020 W5LUA -122 GHz Update
 - May 2, 2020 W5LUA DB6NT 122 GHz Mixer
 - May 2, 2020 W5LUA 122 GHz Update
 - July 11, 2020 W5LUA 122 GHz Update VK3CV Transceiver
 - Oct. 3, 2020 W5LUA Conquering Lake Lavon on 122 GHz

More resources

The 122G03 Transverter Users Group

Active user group

https://groups.io/g/The122GProject

Gordon G0EWN

Noel – G8GTZ

Rene Barbeau VE2UG

K6ML – 122 GHz VK3CV Transceivers <u>http://www.50mhzandup.org/vk3cv_zoom_workshop_070720.pdf</u> K6ML – Building & Operating 122 GHz Radios <u>http://www.bay-net.org/uploads/1/2/2/7/122774721/122_ghz_radio_k6ml.pdf</u>

Questions?

