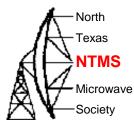


Building a Waveguide to Coax Transition

2/2/19 N5BRG

Commercial Rectangular Brass Tubing Frequency Cutoff

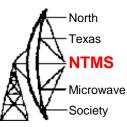
Retangular Waveguide	TE10 Mode D	ominant Mode			
	(in)	(in)	(m)	(m)	(GHz)
	а	b	а	b	Fc
Pozar Example>	0.421259	0.4	0.011	0.010	9.71
	0.9	0.4	0.023	0.010	6.56
	1.122	0.497	0.028	0.013	5.26
	0.622	0.311	0.016	0.008	9.49
	0.875	0.375	0.022	0.010	6.74


Round Pipe TE11 Mode Radius

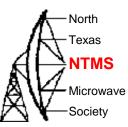
W5HN

 		-	
а	а	P'11=	1.841
in	(cm)		
	0.20	0.5	12.19
	0.375	0.95	9.23
	0.5	1.27	6.92
	0.75	1.91	4.61
	1	2.54	3.46
	1.25	3.18	2.77
	1.5	3.81	2.31
	2	5.08	1.73
	3	7.62	1.15

Assumes dielectric is air. Consider using a filler material (Teflon).



Vendor


W5HN

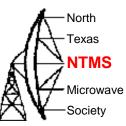
Mc Murray Metals Co https://www.mcmurraymetals.com/ 3000 Elm St Dallas, TX 75226 214-742-5654 800-658-5655

Purchased: Tubing ³/₄ X ¹/₂ inches Square Plates 1/8 X 1 5/8 X 1 5/8 inches

W1GHZ QEX Paper

Rectangular Waveguide to Coax Transition Design from QEX, Nov/Dec 2006.

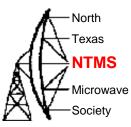
Rectangular waveguide transitions to

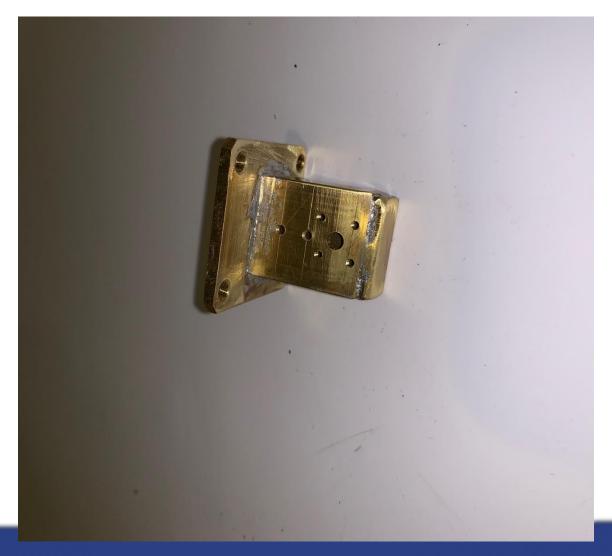

Table 1

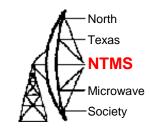
Rectangular Waveguide to Coax Transitions

W1GHZ 2006

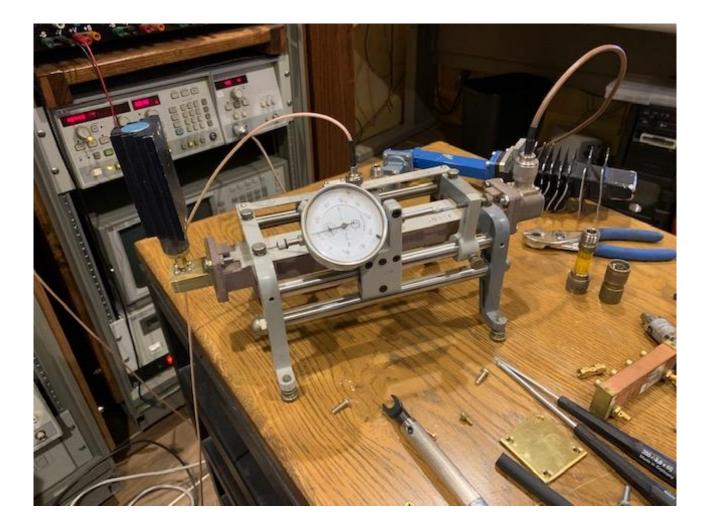
Waveguide	Frequency (GHz)	Probe Diameter (mm)	Probe Length (mm)	Backshort Length (mm)	Bandwidth	Number Tested
WR-42	24.192	1.27	2.41	2.49	>17%	4
WR-75	10.368	1.27	5.49	5.26	14%	1
WR-90	10.368	1.27	5.89	5.46	7%	5
WR-112	10.368	1.27	6.5	6.6	15%	1
WR-112	5.76	1.27	9.8 8.8	5.8 9.8	7%	
WR-137	5.76	1.27	10.5	8.5	10%	1
WR-159	5.76	1.27	11.17	10.0	11%	1
WR-159	5.76	AWG no. 12	10.9	10.0	14%	
WR-187	5.76	2.36	11.3	11.0	16%	
WR-187	5.76	SMA to 2.36	11.6	9.7	16%	1
WR-187	5.76	AWG no. 12	11.3	11.2	14%	
WR-187	3.456	2.36	14.5	18.0	5%	
WR-187	3.456	SMA to 2.36	15	16.5	5%	1
WR-187	3.456	AWG no. 12	14.9	17.4	7%	
WR-229	3.456	1.27	18.2	15.0	8%	
WR-229	3.456	AWG no. 12	17.7	15.1	10%	
WR-229	3.456	2.36	17.4	15.06	11%	
WR-229	3.456	3.175	17	15.6	11%	

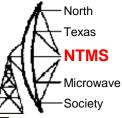

Two Completed Coax to WG Transitions and Back plate material



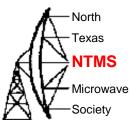


W5H<u>N</u>


Completed Coax to Waveguide Transition

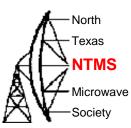


HP8909B Slotted Line Fixture



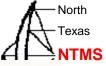
HP8350A

Testing

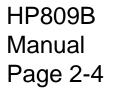


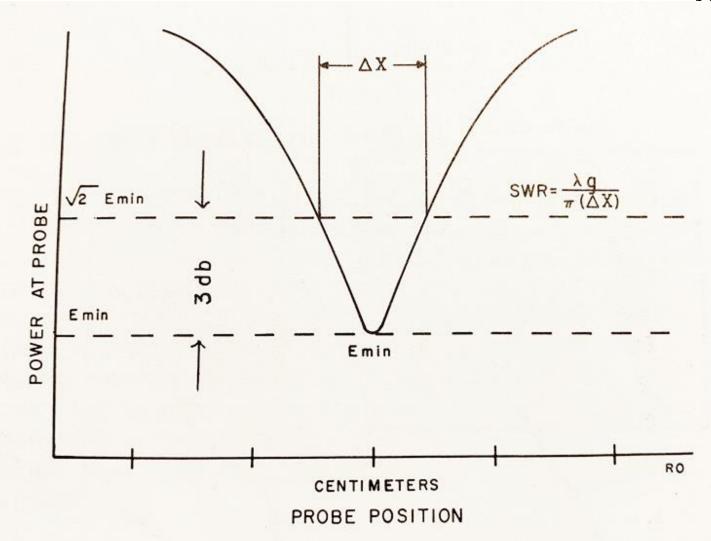
Spectrum Analyzer

10.368 GHz Wavelength in Waveguide

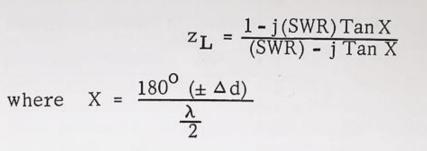


WAVELENGTH


dielectric (air)	1				
pi	3.14				
2 pi	6.28				
С	300				
f	10368				
а	0.0222 meters		0.875 inches		
		full		half	
Wavelength(g)	0.0381 meters		1.501 inches		0.750 inches
Wavelength	0.0289		1.139		0.570
Error Sources	dielectric ; moisture - humidity&temp, homgeneous a; dimensional varations, contamination, burrs f: errors in test frequency accuracy				


Measurement issues; X position, Power resolution and stability

Ref: Microwave Engineering Third Edition by Pozar



∕licrowave Зосiety

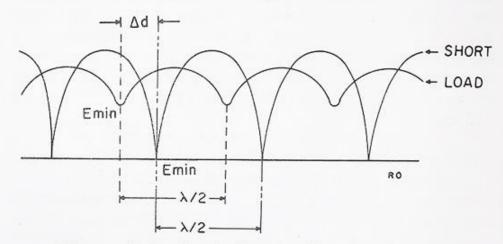
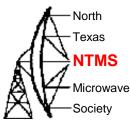
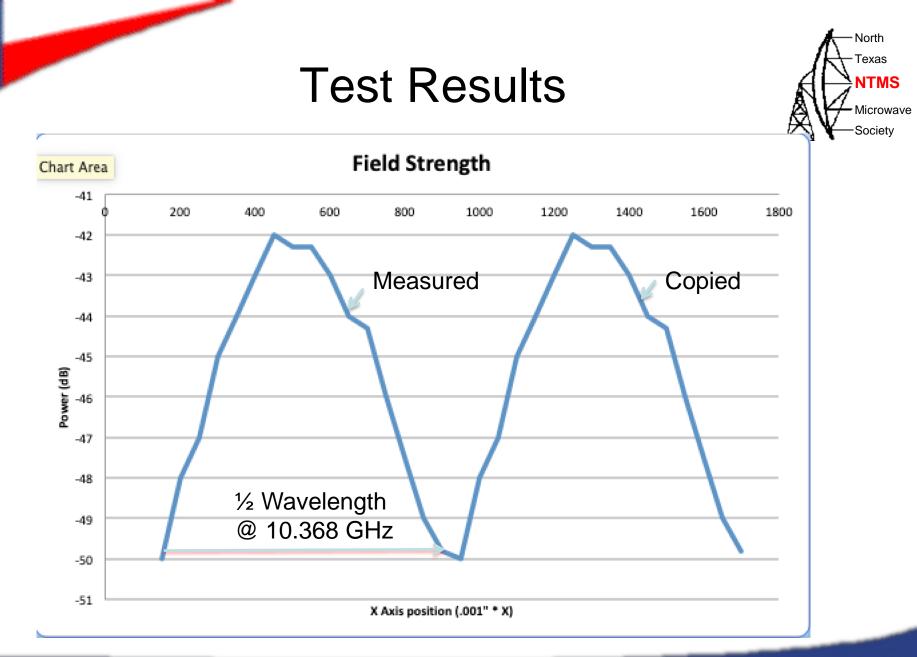
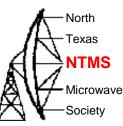
HP809B Manual Page 2-4

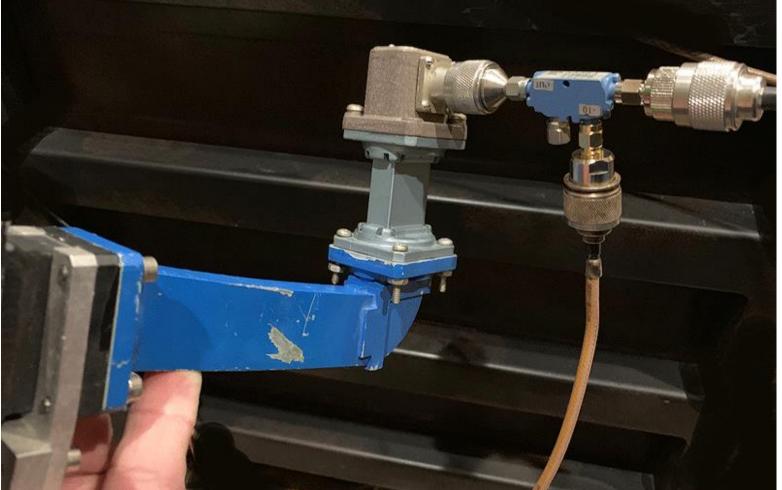
and $\pm \Delta d$ = Shift in centimeters of the minimum point when the short is applied.

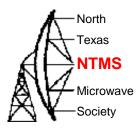
 Δd takes a positive (+) sign when the minimum shifts toward the load.

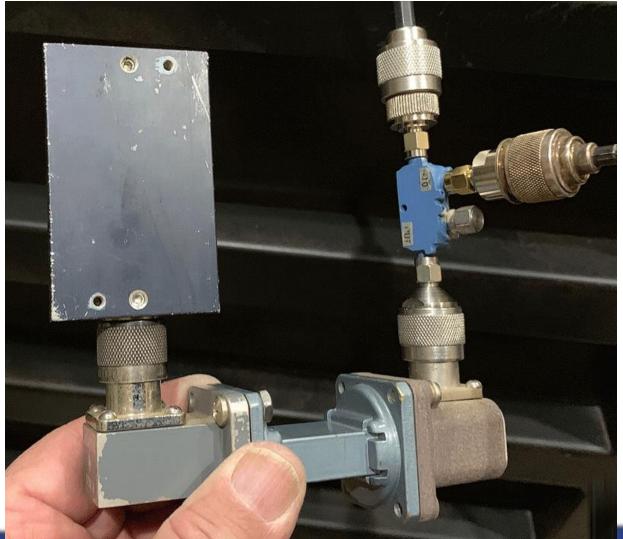
 Δd takes a negative (-) sign when the minimum shifts toward the generator.

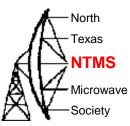
 $\frac{\lambda}{2}$ = One-half line or guide wavelength. It is the distance in centimeters as measured between two adjacent minima.

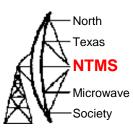

Figure 2-4. Graph Showing Standing Wave Patterns with a Load and Short



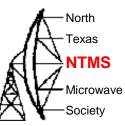

Using Waveguide Load with directional coupler



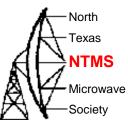
Using Directional Coupler 2nd Transition + 50 Ohm Load



Return Power using Directional Coupler


Transition			
Tested	(dB)	(dB)	
A	-9	-19	Waveguide 50 ohm
X281A Gray	1	-32	Waveguide 50 ohm
В	-20	-30	Waveguide 50 ohm
С	-20	-34	Waveguide 50 ohm
X281A Gray	-22	-22	Waveguide 50 ohm
X281A Black	-22.5	-21	Waveguide 50 ohm
X281A Gray X281A Brown	-20	-22	No load - Open
	-20	-21	N 50 Ohm Load
А	-20	-27	N 50 Ohm Load

Minicircuits SWR Chart Fwd_Pwr vs. Rtn_Pwr = Return Loss


• https://www.minicircuits.com/app/DG03-111.pdf

RETURN LOSS VSWR (d B)	RETURN LOSS VSWR (d B)	RETURN LOSS VSWR (dB)	RETURN LOSS VSWR (dB)	RETURN LOSS VSWR (dB)
46.064 1.01	13.842 1.51	9.485 2.01	7.327 2.51	5.999 3.01
40.086 1.02	13.708 1.52	9.428 2.02	7.294 2.52	5.970 3.02
36.607 1.03	13.577 1.53	9.372 2.03	7.262 2.53	5.956 3.03
34.151 1.04	13.449 1.54	9.317 2.04	7.230 2.54	5.935 3.04
32.256 1.05	13.324 1.55	9.262 2.05	7.198 2.55	5.914 3.05
30.714 1.06	13.201 1.56	9.208 2.06	7.167 2.56	5.893 3.06
29.417 1.07	13.081 1.57	9.155 2.07	7.135 2.57	5.872 3.07
28.299 1.08	12.964 1.58	9.103 2.08	7.105 2.58	5.852 3.08
27.318 1.09	12.849 1.59	9.051 2.09	7.074 2.59	5.832 3.09
26.444 1.10	12.736 1.60	8.999 2.10	7.044 2.60	5.811 3.10
25.658 1.11	12.625 1.61	8.949 2.11	7.014 2.61	5.791 3.11
24.943 1.12	12.518 1.62	8.899 2.12	6.984 2.62	5.771 3.12
24.289 1.13	12.412 1.63	8.849 2.13	6.954 2.63	5.751 3.13
23.686 1.14	12.308 1.64	8.800 2.14	6.925 2.64	5.732 3.14
23.127 1.15	12.207 1.65	8.752 2.15	6.896 2.65	5.712 3.15
22.607 1.16	12.107 1.66	8.705 2.16	6.867 2.66	5.693 3.16
22.120 1.17	12.009 1.67	8.657 2.17	6.839 2.67	5.674 3.17
21.664 1.18	11.913 1.68	8.611 2.18	6.811 2.68	5.654 3.18
21.234 1.19	11.818 1.69	8.565 2.19	6.783 2.69	5.635 3.19
20.828 1.20	11.725 1.70	8.519 2.20	6.755 2.70	5.617 3.20
20.443 1.21	11.634 1.71	8.474 2.21	6.728 2.71	5.598 3.21
20.079 1.22	11.545 1.72	8.430 2.22	6.700 2.72	5.579 3.22
19.732 1.23	11.457 1.73	8.386 2.23	6.673 2.73	5.561 3.23
19.401 1.24	11.370 1.74	8.342 2.24	6.646 2.74	5.542 3.24
19.085 1.25	11.285 1.75	8.299 2.25	6.620 2.75	5.524 3.25
18.783 1.26	11.202 1.76	8.257 2.26	6.594 2.76	5.506 3.26
18.493 1.27	11.120 1.77	8.215 2.27	6.567 2.77	5.488 3.27
18.216 1.28	11.039 1.78	8.173 2.28	6.541 2.78	5.470 3.28
17.949 1.29	10.960 1.79	8.138 2.29	6.516 2.79	5.452 3.29
17.690 1.30	10.881 1.80	8.091 2.30	6.490 2.80	5.435 3.30
17.445 1.31	10.804 1.81	8.051 2.31	6.465 2.81	5.417 3.31
17.207 1.32	10.729 1.82	8.011 2.32	6.440 2.82	5.400 3.32
16.977 1.33	10.654 1.83	7.972 2.33	6.415 2.83	5.383 3.33
16.755 1.34	10.581 1.84	7.933 2.34	6.390 2.84	5.365 3.34
16.540 1.35	10.509 1.85	7.894 2.35	6.366 2.85	5.348 3.35
16.332 1.36	10.437 1.86	7.856 2.36	6.341 2.86	5.331 3.36
16.131 1.37	10.367 1.87	7.818 2.37	6.317 2.87	5.315 3.37
15.936 1.38	10.298 1.88	7.781 2.38	6.293 2.88	5.298 3.38
15.747 1.39	10.230 1.89	7.744 2.39	6.270 2.89	5.281 3.39
15.563 1.40	10.163 1.90	7.707 2.40	6.246 2.90	5.265 3.40
15.385 1.41	10.097 1.91	7.671 2.41	6.223 2.91	5.248 3.41
15.211 1.42	10.032 1.92	7.635 2.42	6.200 2.92	5.232 3.42
15.043 1.43	9.968 1.93	7.599 2.43	6.177 2.93	5.216 3.43
14.879 1.44	9.904 1.94	7.564 2.44	6.154 2.94	5.200 3.44
14.719 1.45	9.842 1.95	7.529 2.45	6.131 2.95	5.184 3.45
14.564 1.46	9.780 1.96	7.494 2.46	6.109 2.96	5.168 3.46
14.412 1.47	9.720 1.97	7.460 2.47	6.086 2.97	5.152 3.47
14.264 1.48	9.660 1.98	7.426 2.48	6.064 2.98	5.137 3.48
1/ 120 1/0	0.601 1.00	7 303 2 40	6.042 2.00	5 121 3 49

- Using a directional coupler monitor return power and sweep carrier frequency over band of interest.
- The minimum dip will occur at ideal frequency for coupler. (Showed Movie)
- Ideal for my Transition 'A' was 9.8 GHz.
- Design needs modification!

Conclusion

- A method for building coax to waveguide transitions using standard tubing shown.
- Three methods for testing a hand made coax to waveguide transition where shown.
- Possible to build and test a transition using these methods that will work on any band.
- Important to test your transition commercial or hand made to be sure you are radiating the max and not reflecting back into your transmitter/amp.