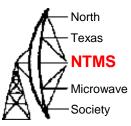
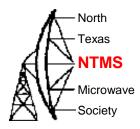


Microwave Operations


Operating the Microwave Bands and NTMS Activity

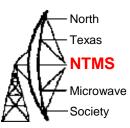
Cowtown January 20, 2018



Microwave Activity

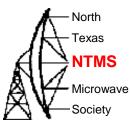
- Microwave Contest
- EME (Earth Moon Earth)
- Data Transmission

 Packet, JT (Joe Taylor) Weak Signal Modes
- Terrestrial weak signal
- Meteor Scatter and Rain/Snow Scatter
- Satellite operations
- Optical Laser

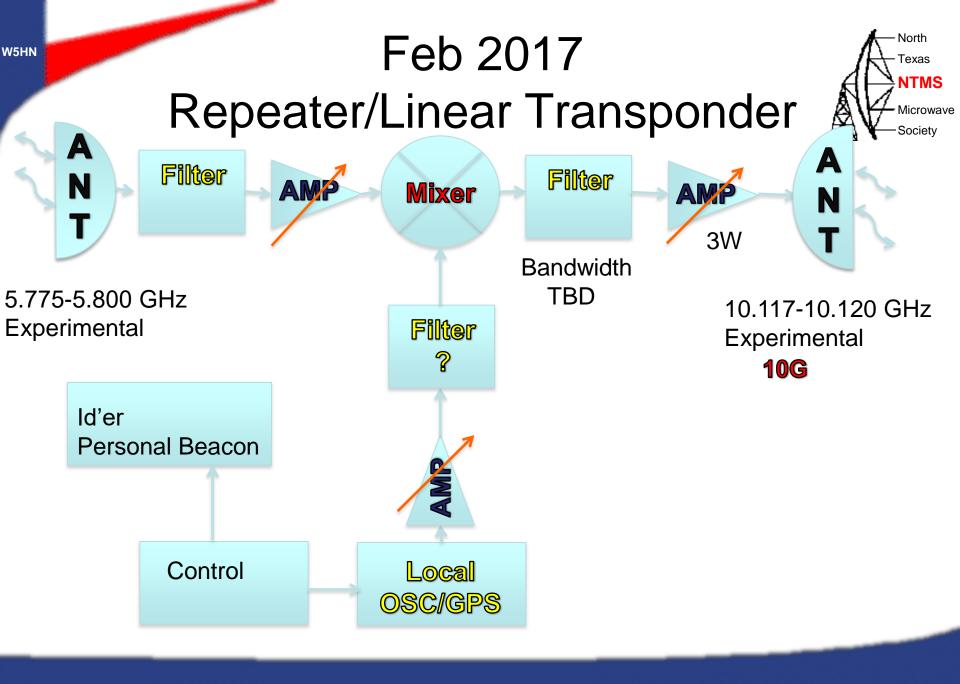


Microwave Operation

- Operation: scheduled, contest or band opening.
- Every operating event is a experiment, learning, and growing experience to prove your equipment and skills.
- Beacons are an key asset. With beacons you can test your radio and antenna. The Beacon list is on the NTMS.ORG Website
- Frequency reference that is stable is best but not essential when SDR technology is used.

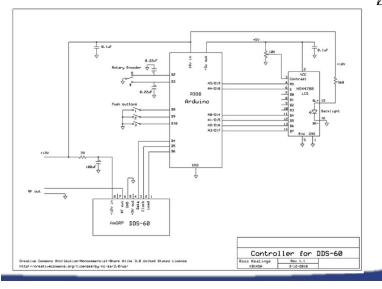

Microwave Technology

Antennas



- Yagi (PCB) Dish Feed Horns Waveguide
- Typically smaller higher gain narrow beam angle than HF antennas
- NTMS guidance with plans and methods
- WA5VGB and others have many years of experience making and measuring antennas.
- Every Ham loves to work on antennas
- Learning with wavelengths that are one HAND in length is easier

Beacons


Frequency (MHz)	Call	Grid	Power Output	Antenna	Height Above Ground
50.072	W5HN/B	EM13sj	0.5 W	Halo	180 ft
144.280.2	W5HN/B	EM13sj	1.5 W	Halo	180 ft
222.060	AA5C/B	EM13se	8 W	Folded Dipole	52 ft
432.369	N5PYK/B	DM93bm	50 W	Yagi toward DFW	70 ft
432.380	W5HN/B	EM13kf	0.5 W	Halo	280 ft
902.379.6	W5HN/B	EM13kf	9 W	Alford Slot	280 ft
1296.375	W5HN/B	EM13kf	3 W	Alford Slot	280 ft
2304.367	W5HN/B	EM13kf	4 W	Alford Slot	280 ft
3456.381	W5HN/B	EM13kf	250 mW	Alford Slot	280 ft
5760.363	W5HN/B	EM13kf	158 mW	Alford Slot	280 ft
10368.366	W5HN/B	EM13kf	2.3W	8 Slot WR-90	280 ft
24192.353	AA5C/B	EM13se	500 mW	16 slot WR42	75 ft
47088.300		ĺ			

3/17 AA5C Greg

Arduino Controls and Connections to the DDS-60 and LCD

- North

Texas

NTMS

Society

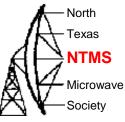
Microwave

3/17 G4FRE Dave Robinson

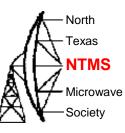
Construction Projects

AQRP VNA PiHPSDR Triband Amplifier FT817 Band Decoder

UK Activity

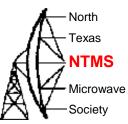

1.3GHz UKAC SHF UKAC VHF NFD

4/17 WA5VJB Kent

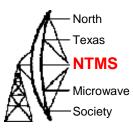

Talk on filters, circulators, isolators and mixers.

Second talk on TWT Theory and Operation with examples.

5/17 W5LUA AI DB6NT Oscillator Phase Noise



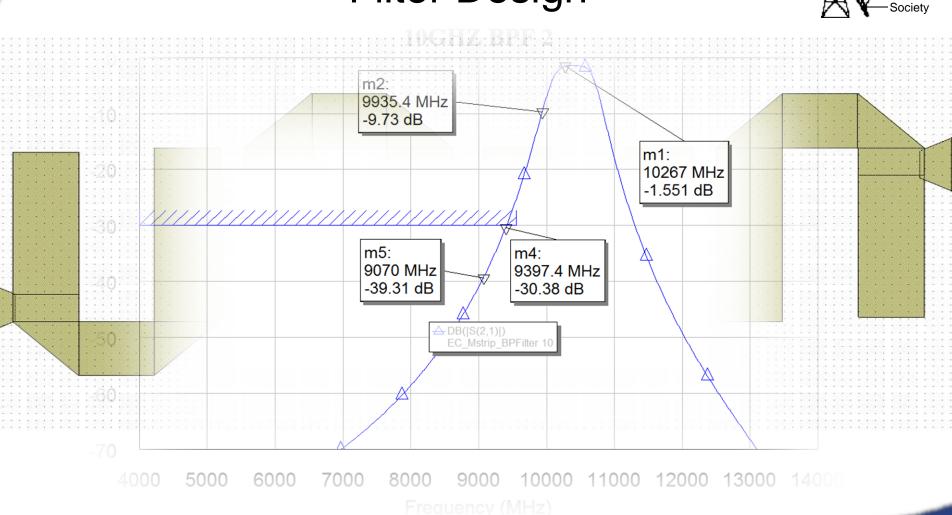
-90 dBc/Hz @ at 10 Hz spacing


Followed up with: ADF4351 Phase Noise

6/17 Hamcom AA5C Greg

- Background
- The Arduino Uno and LCD Button Shield
- DDS-60 Controller
- ADF4351 Controller
- ADF4351 3312 MHz LO
- ADF4351 NTMS 432.380 MHz beacon
- ADF5355 Controller

7/17 Group 10 GHz ARRL Contest Planning



• 19-20 Aug 10 GHz & Up - Round 1

W5HN

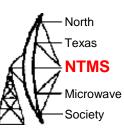
• 16-17 Sep **10 GHz & Up - Round 2**

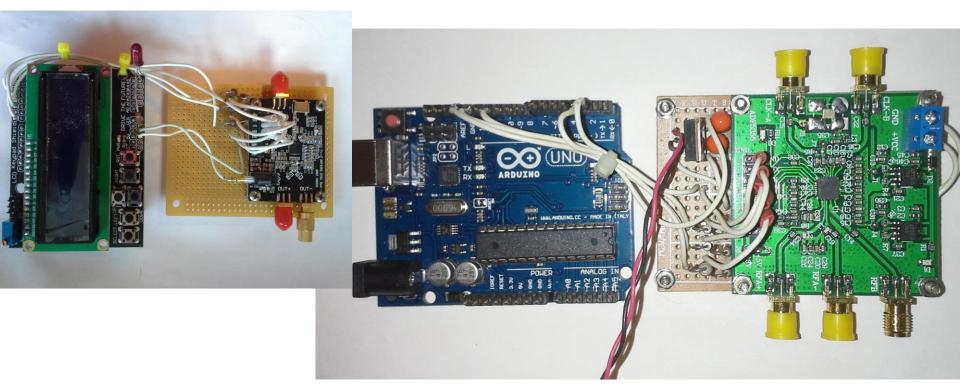
7/17 AF8Z Chuck Filter Design

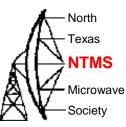
WWW.NTMS.ORG

- North

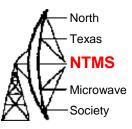
Texas


Microwave


7/17 AF8Z Chuck Expedition Results


- North Texas NTMS Microwave Society

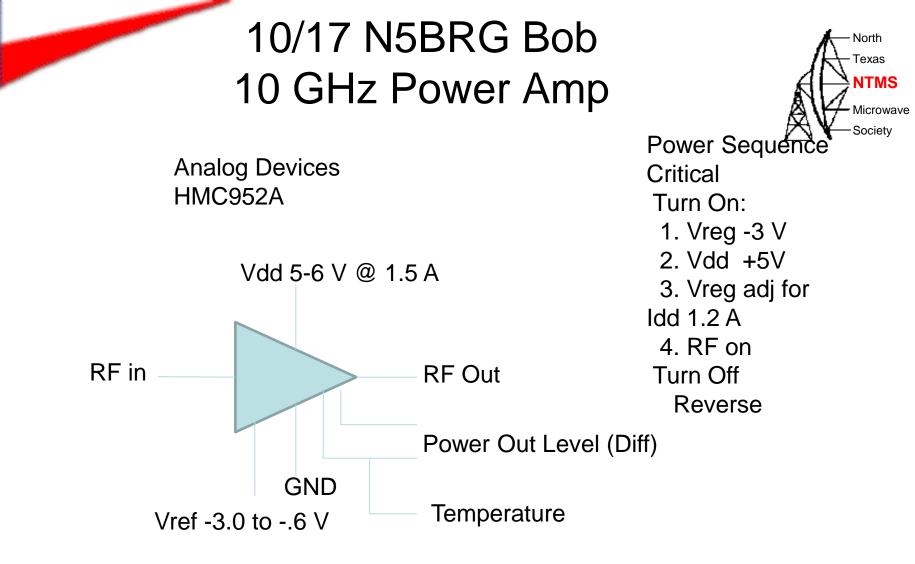
9/17 AA5C Greg 432 MHZ Beacon LO & Keyer Updates on Frequency Synthesizer

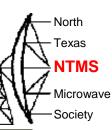


9/17 W5LUA AI - Contest Results W5LUA August (blue) /September (red) 2017 10 GHz Log

- WA5YWC/R EM12qn, EM12qj, EM12oe, EM13ni, EM13hj, EM13ff, EM12fr, EM12mw, EM14kj, EM14fe, EM14ad, EM04te, EM04of, EM04ib, EM03kq, EM2lc, EM11ks, EM11ib, EM12nk,
- AA5C EM13se

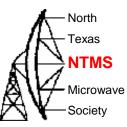
- N5WCO EM12mo
- NO5K EM10cm
- W3XO/5 EM00kd
- WA5VJB EM12lq
- W5RLG/R EM13ne, EM13ei, EM03xe, EM13qm, EM13oi
- K5ZSJ/R EM13ne, EM13ei, EM13na, EM3qm, EM13oi, EM13qe
- AA5AM EM13sg
- N5BRG/R EM13il
- K5LLL EM10kf
- K5VH EM00xe
- K5SOP/R EM22fm
- K5AND EM00xh
- K8ZR/R EM24tq, EM24qq, EM14kj, EM13jg, EM12gj, EM01wv, EM01vf
- K5TRA EM0bf
- WQ5S/R EM13ef, EM03xe, EM13if
- 52 QSOs on 10 GHz, 17 unique call signs, a great showing from the NTMS and RMG area.


9/17 WA5YWC Bob



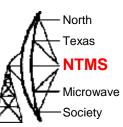
W5HN

WWW.NTMS.ORG



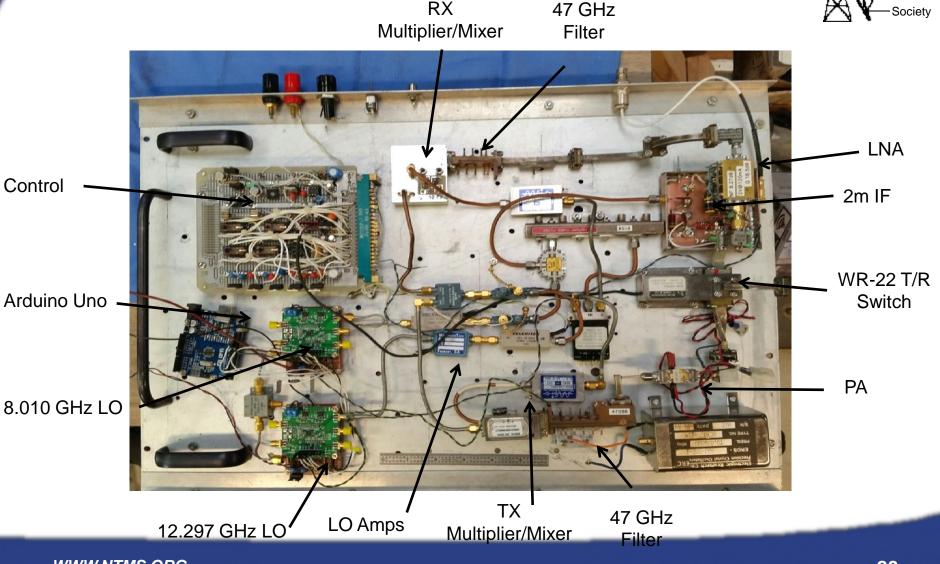
November 17 Gathering Testing - Show and Tell - Build

November 17 Gathering Testing - Show and Tell - Build



W5HN

WWW.NTMS.ORG

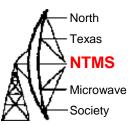

November 17 Gathering Testing - Show and Tell - Build

WWW.NTMS.ORG

12/17 AA5C Greg 47 GHz "Cookie Sheet"

WWW.NTMS.ORG

W5HN


- North

Texas

NTMS

Microwave

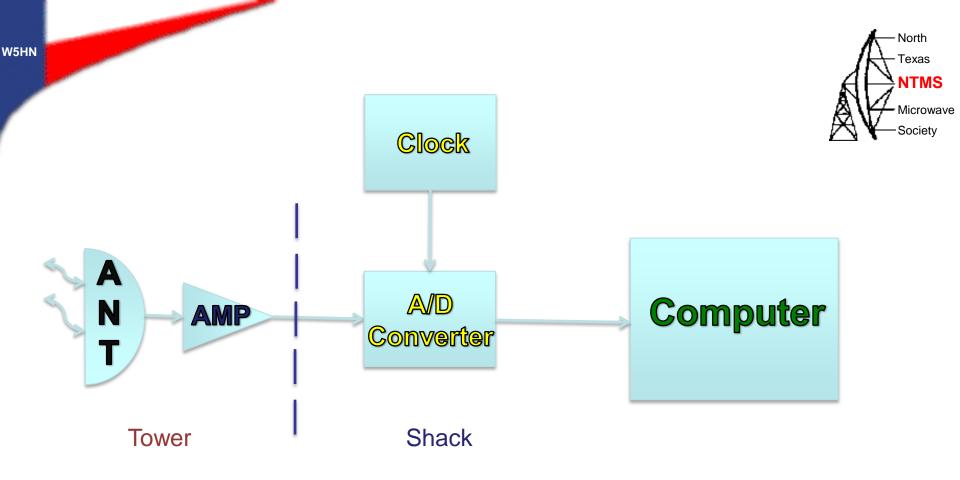
5 14.050 GAIN	AF G	14.040		GC MEDIUM		NR NR2 ANF	NB NB2	OA: 14 ked Split PS
IVE			14.035	14.030	14.025	14.020	14.015	dBm 14.010 dBm
	DRIV							di Darg
Statement of the local division in which the local division in the								dBm dBm
				l interes				dBm dBm
		dв): 0 	ATT (80	SC:	A		AF: 10
		lch: 0	Sque	50	ive:	D		(dB):
				80 50				AF:

PiHPSDR

Program runs on Ubuntu and other Raspberry Pi operating systems. Connects to a Software Defined Radio - HPSDR – Hermes – Many Others

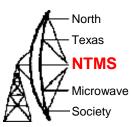
Credit John Melton G0ORX/N6LYT

WWW.NTMS.ORG

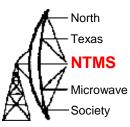


SMA Connector

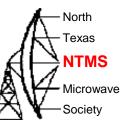
USB Connector


Dongle Example

Note: SMA connector with a Bias Tee option for preamp power.


Most Basic Software Defined Radio - SDR

Using Raspberry Pi + RTL To View RF Spectrum


- After installing necessary programs to run rtl_power_fftw the following command line will give you a spectrum view of the band selected:
- rtl_power_fftw -f 900M:950M -n 10 -b 512 -c -q | sed -u '/rtl-power-fftw/s/.*/ plot "-"/;/^\$/{N;s/^\n\$/e/}' | gnuplot
 - The frequency range here is 900 MHz to 950 MHz.
 - The output of rtl_power_fftw is piped to sed and then piped to gnuplot for display.

Logging Spectrum Activity

- Rtl_power can be used to log RF power in a defined band of spectrum to a comma delimited file. The resulting file can be studied later of viewed as a JPG or PS file by processing the data with a program called heatmap.py. Use the Ubuntu Mate Graphics Application 'Eye of MATE Image Viewer'.
- Be careful about filling up your system memory with large data files. Save data to an externally mounted thumb drive to be safe.

Examples of commands needed:

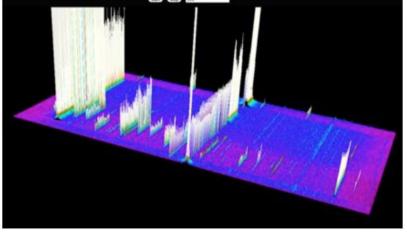
rtl_power -f 900M:930M:100k /media/users_name_here/UBUNTU_1/900mhz_\$mytime.csv -i 1

Stop data collection with CTRL C then process file with:

heatmap.py 900mhz_time.csv 900mhz_time.jpg

Then use the Application 'Eye of MATE...' to view the waterfall type image.

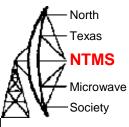
Using RTL to log RF Example of logging


North

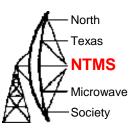
Texas

NTMS

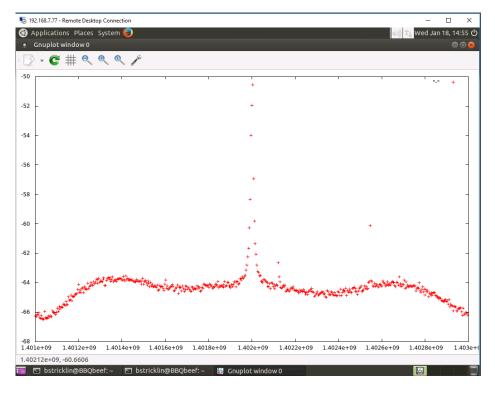
Microwave Societv


Threejs-Spectrum (Chrome) (Free) (Related Post)

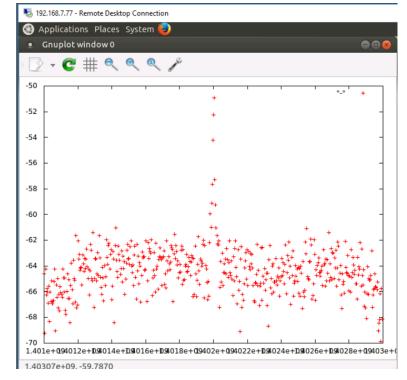
Chrome 3D Frequency Spectrum for RTL-SDR


To log to a CSV file: Rtl_power –f 904M:908M:100K /log/filename.csv -I 1

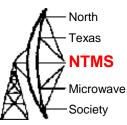
RTL-SDR + Pi

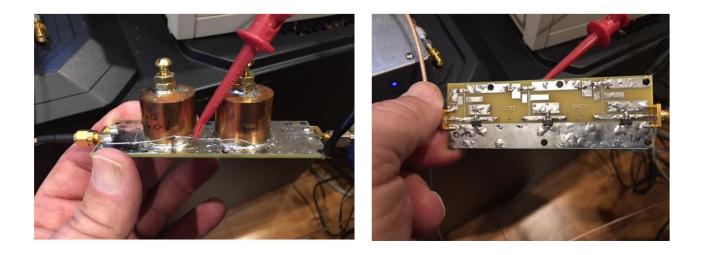


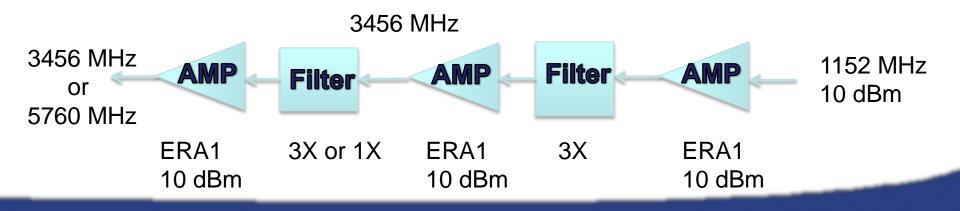
Spectrum 1.401 GHz to 1.403 GHz



N=100

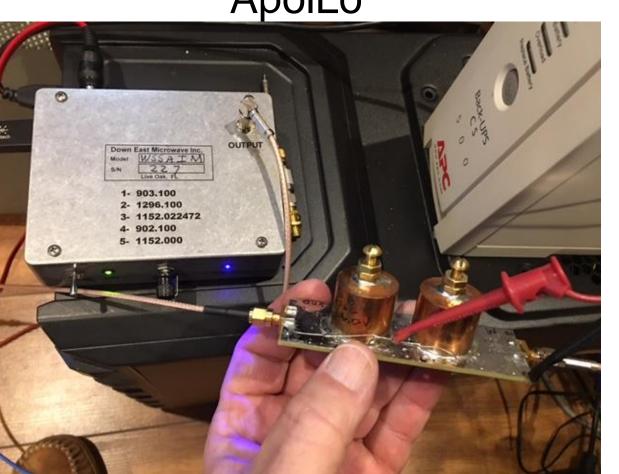

W5HN




N=10

W1GHZ Personal Beacon

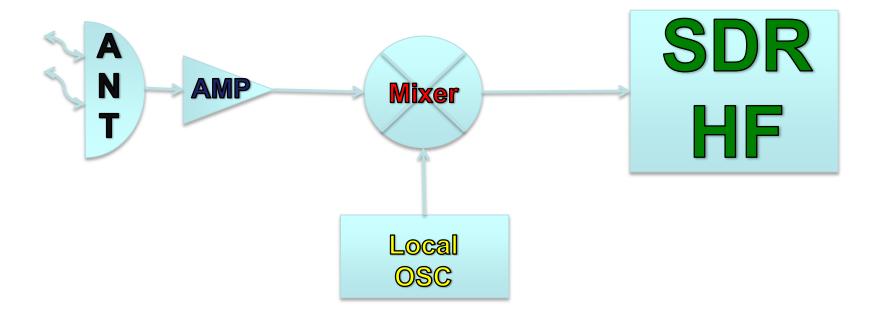
Down East Microwave Frequency Reference - Steve Hicks N5AC ApolLo

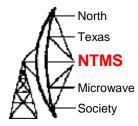

North

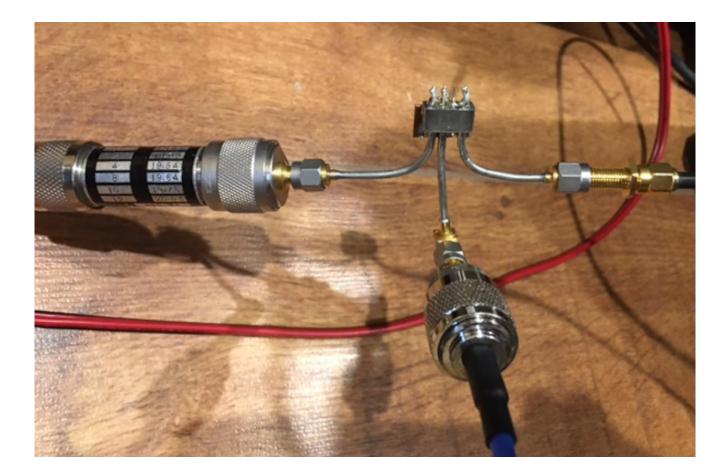
Texas

NTMS

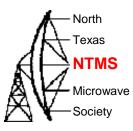
Society

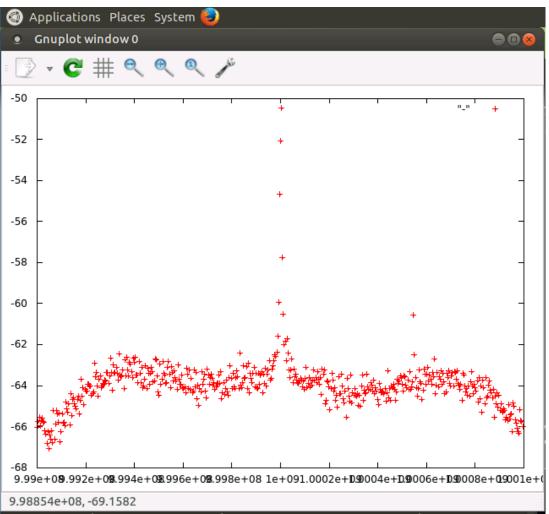

Microwave


http://01895fa.netsolhost.com/PDF/Manuals/VHFApolLO_Operation.PDF



Microwave Radio Receiver




Mixer LO + RF = IF - 20 dBm

Using Mixer and 3456 Beacon $LO = 2456 \rightarrow IF = 1000 MHz$

10.368 GHz Personal Beacon

K5SOP Jerry found this LO ebay: PLL 23cm SHF band LO transverter beacon

\$59 on ebay

North

Texas

NTMS


Society

Microwave

W5HN

WWW.NTMS.ORG

Transverter Example

WWW.NTMS.ORG

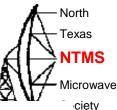
- North

Texas

NTMS

5760 Transverter

- North


Texas

NTMS

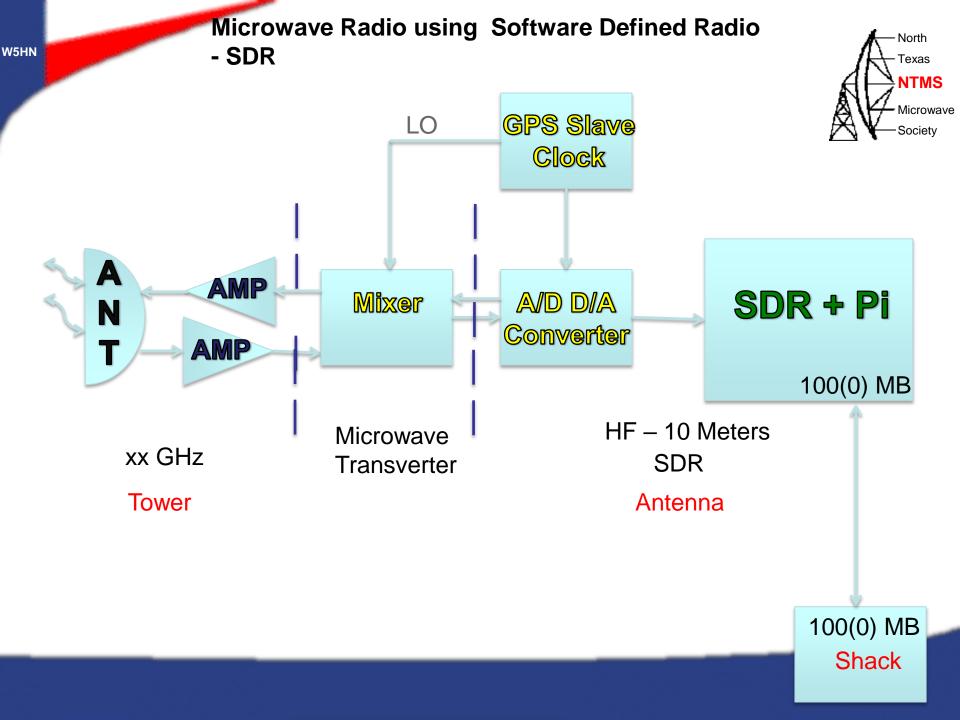
Microwave
 Society

W5HN

Paul Wade W1GHZ PCBs

- _____ Simple, yet "Fool-Resistant" Sequencer, RevisionB \$5
- _____ Simple Low-cost 5760 MHz Transverter for Rover \$11
- ____ MBA-591 Mixer for 5760 Transvert \$10
- LO or Personal Beacon for 5760 or 3456 MHz \$6

VCXO lock for Microwave LO - flexible version	\$6
with prescaler good to 1.1 GHz	
OO MILLE AND THE CONTRACT OF MALE AND A DESCRIPTION OF A	^


- _____ 80 MHz version for Multiband Transverter \$3
- _____ Flexible VCXO Lock (GPS or other reference) \$6 Low frequency version (<30 MHz)
- _____ Modest Power Amplifier (GVA-84) \$3.00 two for \$5 _____ ADL5324 Power Amplifier and PGA-103 preamp \$3.50 three for \$10
- _____ Panadapter for FT-817 and Funcube Dongle \$3.50
- _____ Miniverter-F tiny 144M transverter for Flex-1500 \$6 see kits below ADE-2 for VHF and UHF \$5
- Personal Beacon for 10 GHz

Multiband Microwave Transverter for the Rover: see <u>http://www.w1ghz.org/new/Multiband_Rover_Transverter.pdf</u>

Local Oscillator Board 720 or 756 MHz	\$12	
Transverter Board for 2304 or 3456 MH DE-18W mixer for 2304 and 3456	lz \$10 \$5	
Transverter Board for 1296 (right side uses Power Splitter (Minicircuits TCP- ADE-5 mixer for 1296 or 902		
Local Oscillator Board 1152 MHz	\$12	
Transverter Board for 902	\$10	
LO Board + one transverter board (cho	ice) \$20	
LO Board + two transverter boards	\$29	
LO Board + three transverter boards	\$37	
Relay board (pin and surface mount)	out of stock	
Mixers from Minicircuits (only available with boards):		
ADE-18W for 2304 and 3456	\$5	
ADE-5 for 1296 or 902	\$5	
ADE-2 for VHF and UHF	\$5	
MBA-591 for 5760	\$10	

Check w1ghz.org for availability pricing and shipping cost.

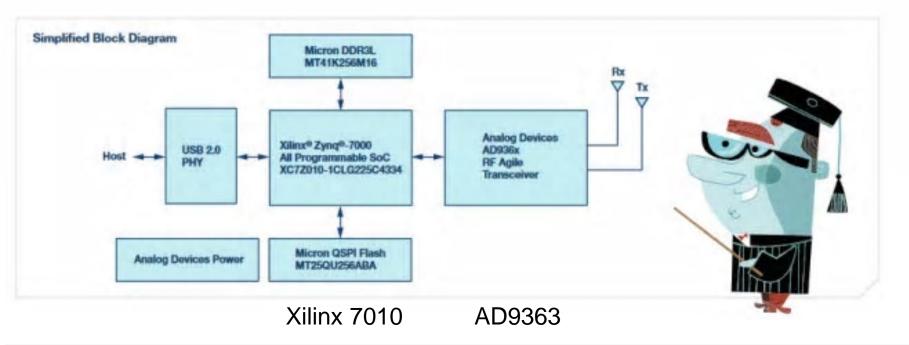
\$6

\$100 @ Mouser

W5HN

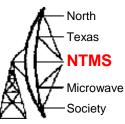
We are shipping (Yeah!). We are sold out. (Boo, bad on us). We are in process of building more.

WWW.NTMS.ORG


44

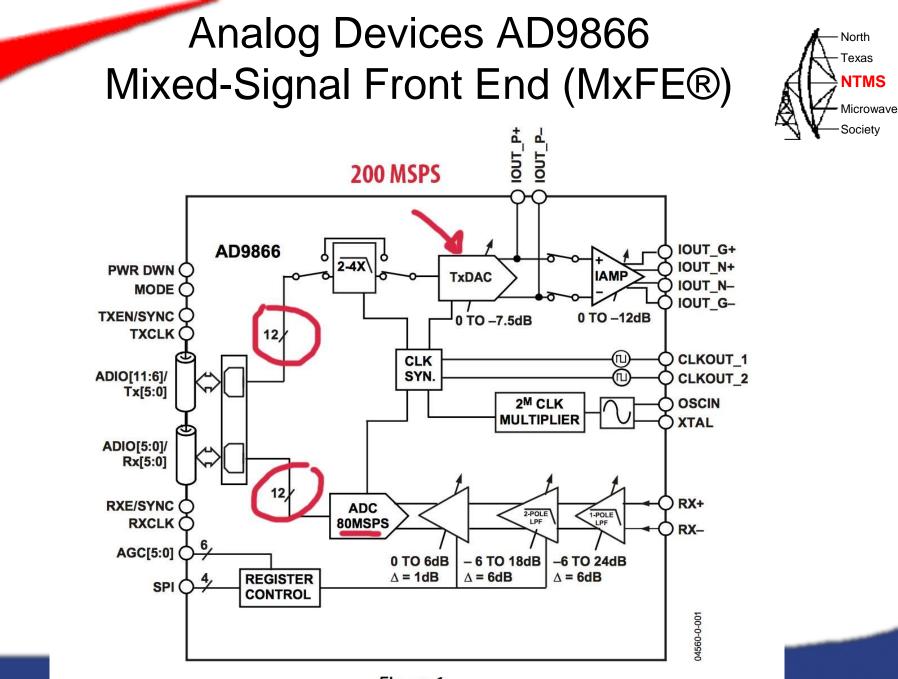
Analog Devices Description:

North Texas NTMS Microway


Associated Product

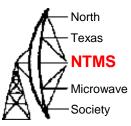
W5HN

AD9363 Highly Integrated RF Agile Transceiver combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers. The design provides a configurable digital interface to a processor. The AD9363 operates in the 325MHz to 3.8GHz range to cover most licensed and unlicensed bands. The transceiver supports channel bandwidths from less than 200kHz to 20MHz.

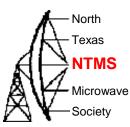

Specifications:

Analog Devices ADALM-PLUTO SDR Active Learning Module

ADALM-PLUTO SDR Active Learning Module Specifica	ations Associated Product
 Power DC Input (USB): 4.5V to 5.5V Conversion Performance and Clocks ADC and DAC Sample Rate: 65.2kSPS to 61.44MSPS ADC and DAC Resolution: 12bits Frequency Accuracy: ±25ppm 	 Digital Specifications USB: 2.0 On-the-Go Core: Single ARM Cortex®-A9 @ 667 MHz FPGA Logic Cells: 28k DSP Slices: 80 DDR3L: 4Gb (512MB) QSPI Flash: 256Mb (32MB)
 RF Performance Tuning Range: 325MHz to 3800MHz Tx Power Output: 7dBm Rx Noise Figure: <3.5dB Rx and Tx Modulation Accuracy (EVM): -34dB (2%) RF Shielding: None 	 Physical Specifications Dimensions: 117mm×79mm×24mm or 4.62"×3.11"×0.95" Weight: 114g Temperature: 10°C to 40°C


AD9363

W5HN


Figure 1.

Links for more info:

- <u>http://kmkeen.com/rtl-power/</u>
- <u>http://www.rtl-sdr.com/tag/rtl_power/</u>
- <u>http://www.rtl-sdr.com/tag/r820t2/</u>
- <u>http://sdr.osmocom.org/trac/wiki/rtl-sdr</u>
- http://www.hermeslite.com
- http://www.rtl-sdr.com/big-list-rtl-sdrsupported-software/
- https://sites.google.com/site/g4zfqradio/install ing-and-using-hdsdr

Microwave Information Resources

- NTMS.org ARRL.org
 - W1GHZ.org

Dubus Magazine

W5HN

- UK Microwave Group
- Ham-Radio.com/SBMG SLAM