Aircraft Scatter 2021

Roger Rehr, W3SZ
North Texas Microwave Society 2021

Aircraft Scatter

- Scattering of radio signals by airplanes
- First documented June 1930 at 33 MHz by L.A. Hyland of Naval Research Laboratory
- First mention in Amateur Radio Literature was by Henry Root W1QNG in Technical Correspondence section of QST in August, 1967

Aircraft Scatter

- Uses aircraft to redirect RF that would otherwise be lost in space
- Increases Communications Distance
- Has increasing advantage over troposcatter as frequency increases
- Has increasing advantage as distance increases, up to $\sim 900 \mathrm{~km}$ (560 miles)
- Truly a weak-signal mode

Aircraft Scatter is Bistatic Radar

$!$

RADAR HORIZON

Physics

Bistatic Radar Equation for Path Loss:
$\mathrm{L}=153+10 \log \left(\left(\left(\left(\mathrm{Rt}^{* *} 2\right)^{*}(\operatorname{Rr})^{* *} 2\right)\right) /\left((\operatorname{lambda**} 2)^{*} \mathrm{~S}\right)\right)$
$\mathrm{L}=$ total loss (dB)
$\mathrm{Rt}=$ distance from transmitter to reflector (km)
$\mathrm{Rr}=$ distance from receiver to reflector (km)
lambda $=$ wavelength (m)
$S=$ radar cross section of aircraft (sq m)

Scattering Mechanisms for an Arbitrary Target

Path Loss at 700 km vs Frequency

LearJet vs 747 vs Troposcatter

LearJet RCS $=2 \quad 10 * \log (2 / 63)=-15 \mathrm{~dB}$
B747 RCS $=63$

Signal Strength Calculations: AS vs TS

Distance 144 MHz 1296 MHz 10 GHz 300 km AS -30 dB AS $-21 \mathrm{~dB} \quad$ AS -12 dB 600 km AS -13 dB AS $-3 \mathrm{~dB} \quad \mathrm{AS}+6 \mathrm{~dB}$ 800 km AS -2 dB AS $+8 \mathrm{~dB} \quad \mathrm{AS}+17 \mathrm{~dB}$ 950 km AS +7 dB AS $+17 \mathrm{~dB} \quad \mathrm{AS}+26 \mathrm{~dB}$

These numbers do not include the effects of Forward Scatter Enhancement.

Troposcatter's Achilles' Heel

Troposcatter Loss vs Total Takeoff Angle

一ー Relative Loss (dB) Collins
\simeq Relative Loss (dB) Yeh

Forward Scatter Enhancement Aircraft Scattering Angle

3

Figure 1: An example of bistatic radar where the transmitter and receiver are close to alignment, copied from Barton ${ }^{9}$

Figure 14.13 Bistatic cross section σ_{b} of a sphere as a function of the scattering angle β and two values of $k a=2 \pi a / \lambda$, where a is the sphere radius and λ is the wavelength. Solid curves are for the E plane $(\beta$ measured in the plane of the E vector); dashed curves are for the H plane (β measured in the plane of the H vector, perpendicular to the E vector) ${ }^{65.69}$

Not just any Magic, but Physics Magic

When the forward scattering angle is 180 degrees: We get constructive interference of the scattered radiation which gives us Forward Scatter Enhancement $=\mathbf{4 * P i}$ * A/(lambda**2)

Radius	Area	Frequency	144 MHz	432 MHz	1296	2304	3 G	5 G	10 G
in meters in	meters Lambda (meters)	2	0.7	0.23	0.13	0.1	0.06	0.03	
1	3	dB Enhancement:	10	19	29	34	36	40	46
5	79	dB Enhancement:	24	33	43	48	50	54	60
10	314	dB Enhancement:	30	39	49	54	56	60	66

Forward Scatter Enhancement (dB) vs Aircraft Scatter Angle

Maximum Forward Scattering Enhancement (dB) vs Distance (km)

Take-home message:
Keep YOUR skew angle less than 3-5 degrees to keep FSE within 10 dB of maximum possible value

Trade-off with increased reflector size or higher frequency:
FSE vs beamwidth

Forward Scatter Enhancement:
39.5 * (Pi *R/lambda)**2

Beamwidth (in degrees):
14.32 * lambda/R

Can't have both Maximum FSE and Maximum Beamwidth

Radius (m)	Frequency	144	432	1296	2304	3G	5G	10G
1		29.84	9.95	3.32	1.87	1.24	0.75	0.41
5		5.97	1.99	0.66	0.37	0.25	0.15	0.08
10	${ }_{\text {3 dibegream width }}$	2.98	1.00	0.33	0.19	0.12	0.08	0.04

Maximum size of scattering object to provide 3 dB beamwidth of at least 3 degrees

Freq (MHz)	144	432	1296	2304	$3 G$	$5 G$	$10 G$
Radius (m)	9.54	3.34	1.10	0.620	0.477	0.286	0.143

Small R / lambda occurs with:
Lower frequency Smaller reflector
Results in: Less FSE
Wider beamwidth

Large R / lambda occurs with: Higher frequency Larger reflector
Results in: More FSE
Narrower beamwidth

Scattering Mechanisms for an Arbitrary Target

Composite Data Set VK7MO \& VK3HZ QFA1020

Fig 1: 10 GHz aircraft scatter signals from Werribee in Victoria to Swansea in Tasmania

Troposcatter (blue) vs Aircraft Scatter (red)
$01: 29: 30$ Vs 01:30:30

Path Loss at 300 km vs Frequency
Troposcatter \& Aircraft Scatter with/wihout FSE

Path Loss at 700 km vs Frequency Troposcatter \& Aircraft Scatter with/wihout FSE

Path Loss at 500 km vs Frequency Troposcatter \& Aircraft Scatter with/wihout FSE

Path Loss at 900 km vs Frequency Troposcatter \& Aircraft Scatter with/wihout FSE

Doppler Shift

Commercial aircraft speeds generally 600-1100 km/h (370-680 mph) $\Delta f=(1 / \lambda) *\left(V_{T x}+V_{R x}\right)$
$\lambda=$ wavelength
$\mathrm{V}_{\mathrm{Tx}}=$ Plane's Velocity component along path from aircraft to Tx_{x} station
$V_{R x}=$ Plane's Velocity component along path from aircraft to $R x$ station
When plane is moving along the direct path between $T x$ and $R x$ stations, the two Doppler Velocities cancel out
When plane is moving perpendicular to the direct path between the Tx and Rx stations, the two Doppler Velocities ADD
This is another HUGE reason why it is GREAT when you can make use of a plane traveling along the direct path between your station and your QSO partner's station

Dop 0.0 0.0

Doppler Shift (Hz)

Flight Perpendicular to Inter-station Path (Both Station Components)

$\mathbf{M H z} \mathbf{~ k m} / \mathrm{h}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$
$\mathbf{5 0}$	56	65	74	83	93
$\mathbf{1 4 4}$	160	187	213	240	267
$\mathbf{2 2 2}$	247	288	329	370	411
$\mathbf{4 3 2}$	480	560	640	720	800
$\mathbf{9 0 3}$	1003	1171	1338	1505	1672
$\mathbf{1 2 9 6}$	1440	1680	1920	2160	2400
$\mathbf{2 3 0 4}$	2560	2987	3413	3840	4267
$\mathbf{3 4 5 6}$	3840	4480	5120	5760	6400
$\mathbf{5 7 6 0}$	6400	7467	8533	9600	10667
$\mathbf{1 0 3 6 8}$	11520	13440	15360	17280	19200
$\mathbf{2 4 1 9 2}$	26880	31360	35840	40320	44800

Example of AS Doppler Shift

Freq	Time	$\begin{aligned} & \text { Pixel Value } \\ & --53.1050 \end{aligned}$	Precision $5 \div$		3965A, WBFF	\wedge	\# Pts	All Data At Once
	-53							
$\begin{gathered} \text { Tolerance } \\ \text { Freq }[\mathrm{Hz}] \text { Time [Sec] } \end{gathered}$		-51.8129Plane Size	\# Hits/Total					
					\square Use Box			
$13 \div$	$13 \leqslant$				$15 \sim$			R After Each Time

Clear Waterfall	Sort Display	Box Size
Between Planes	O By Plane	\bigcirc Small
\square Label Points	\bigcirc By Station	\bigcirc Large

GM4CXM heard by aircraft scatter at PA0EHG on 1296 MHz

GM4CXM heard by aircraft scatter at PA0EHG on 1296 MHz

VK3WE heard by aircraft scatter at VK7MO （and vice versa）

on 10 GHz 568 km path with Q65－15C

348 km 10 GHZ RGS 2.6

AS 19 dB relative to TS
Add 20 aB for FSE AS +1 © relative to 7 S
So we expect AS to be +1 dB relative to TS but AS is about +5 dB better than TS

What Do We Know So Far?

Relative benefit of AS increases with frequency and with distance Plane must be along the inter-station path or within about 3 degrees to get 20-30 dB Forward Scattering Enhancement
Longer distances (600-900 km or 432-560 miles) will give greater FSE than shorter distances
Path loss is high, generally above 200 dB for 144 MHz and up, even with maximum Forward Scattering Enhancement
The RCS is never precisely known for any particular case, so exact prediction of signal strengths is not possible. The calculations should be considered to be "order of magnitude", at best

Other Considerations

Antenna Pointing
Doppler Shift/Digital Modes

Is Pointing at the Aircraft Necessary?
Consider both Elevation and Horizontal Skew compared with beamwidth of antenna array

Elevation vs Distance for Aircraft Altitude 10,000 meters

QSO Distance	200 km	400 km	600 km	800 km	1000 km
Distance to Aircraft	100 km	200 km	300 km	400 km	500 km
Elevation	5.4	2.2	0.9	0.08	-0.54

On $10 \mathrm{GHz}, 0.6 \mathrm{M}$ dish with 65% efficiency has 3.3 degree 3 dB beam width (half beam width is 1.7 deg)

Complications when using Digital Modes with Aircraft Scatter

Doppler shift may adversely affect decoding Short chopped up signal blocks Short interval to complete QSO if plane flying perpendicular to inter-station path due to loss of Forward Scatter Enhancement as skew angle increases

Doppler and Digital Modes

During the Tx cycle, each symbol migrates into bin of next higher symbol:

Doppler and Digital Modes

Ability to tolerate Doppler shift depends on signal strength:
JT4G \% Successful Decodes vs Drift Rate

Which Digital Mode to Use?

For Mir owaves, ISCAT was preferred due to its tolerance for Doppler shift its 15 second per' as and ability to cope with short bursts. MSK144 requires signal to be wh in 200 Hz of 000 Hz and JT65 is too slow and can't handle bursts. *with 30s average \#for 76, 00 ms burst <<ISCAT and QRA-64 ARE GONE \& Q65 IS ARRIVING>>

Which Digital Mode to Use?

For Microwaves, ISAT was preferred due to its tolerance for Dopple, ahifts, its 15 second periods and ab cy to cope with short bursts.

* with 30s a rage
\# No AP est) \& Max AP (est) <<ISCAT is GOING AWAY \& Q65 IS ARRIVING

Just Use Q65-15C

New WSJT-X version 2.5.0-rc1 has SUPERB Doppler Compensation built in for Q65
It handles Doppler shift rates up to and including $20 \mathrm{~Hz} / \mathrm{sec}$ far better than ISCAT-A/B, MSK144, JT9-Fast modes (E-H)

O WSIT-X-VK7MO_Tests v2.5.0-devel by K1JT, G4WIS, K9AN, and IV3NWW
File Configurations View Mode Decode Save Tools Help
Single-Period Decodes

UTC	dB	DT Freq		Message			UTC	dB	DT Freq		Message	
000730	-1	0.0	0568	VK3 WE	VK7MO -19	q0	000000	$0-3$	0.5	701		VK3 WE
000000	-3	0.5	5701	VK3 WE	VK7MO-19	q0	000030	- -10	0.5	701		VK3 WE
000030	-3	0.1	1572	: VK3 WE	VK7MO-19	q0	000000	- -3	0.5	698	:	VK3 WE
000000	-3	0.5	5698	: VK3 WE	VK7MO-19	q0						

What's Needed?

1. A willing partner
2. Good station with accurate antenna pointing
3. Knowledge of generally when aircraft will be in suitable positions (historical data may be helpful) so you know WHEN to get on the air
4. Real-time knowledge of where aircraft are at any given moment while you are attempting a contact so you know WHERE to point and EXACTLY WHEN THE MAXIMUM PROBABILITY OF SUCCESS will be

Getting real-time plane data

- Directly off the air --OR-
- Via internet servers
- Both make use of mode S and/or ADS-B transponder data
- Both provide accurate real-time data
- Getting data directly off the air is fun, but for our purposes internet data is necessary as some useful planes will be out of range of local ADS-B receiver.

Realtime data at W3SZ

- \$20 RTL2378 Dongle from Amazon
- WIMO-GP1090 antenna
- Kuhne 1090 MHz preamplifier
- Dump1090 decoder/server software (free)
- AircraftScatter Sharp or PlanePlotter
- I generally see 100-150 planes at a time
- Limited SW/NE exposure due to State Forest

Real-time data at W3SZ
 coverage pattern

W3SZ Realtime Data

AircraftScatterSharp Original

Features

- Real-time capture and display of plane position data derived from an internet plane server, from a local RTL1090 server, or both
- Display of the direct path line between two stations, along with skew lines to allow a quick assessment of the angular deviation of an aircraft's position from the direct path between the stations, and a midpoint circle to show when an aircraft is within a specified distance from the midpoint of the path.
- Path altitude and elevation/obstruction profiles (SRTM)
- Real-time calculation of estimated path loss, received signal strength, and signal margin at both stations based on plane location and user-adjustable station parameters, using either bistatic aircraft scatter, troposcatter or free path formulas.

	utcNow	date	time	fltho	reg	hex	depart	destin	lat	Ion	\wedge
$\stackrel{ }{ }$	2021-06-02_15:3.	20210602	153329	RIDER75	RIDER75	AE146F	United States	Unknown	40.32649993896...	.77.2229995727...	
	2021-06-02_15:3...	20210602	153149	RIDER75	RIDER75	AE146F	United States	Unknown	40.25080108642...	.76.8770980834...	
	2021-06-02_15:3...	20210602	153119	RIDER75	RIDER75	AE146F	United States	Unknown	40.26760101318...	.76.9539031982...	
	2021-06-02_15:3...	20210602	153029	RIDER75	RIDER75	AE146F	United States	Unknown	40.296199798584	.77.0841979980...	
	2021-06-02_15:3...	20210602	152950	RIDER75	RIDER75	AE146F	United States	Unknown	40.31349945068...	.77.1632995605...	
	2021-06-02_14:2...	20210602	142158	RIDER75	RIDER75	AE146F	United States	Unknown	40.34939956665...	.77.9428024291...	
	2021-06-02_14:0...	20210602	140819	RIDER75	RIDER75	AE146F	United States	Unknown	40.33509826660...	.77.9196014404...	
	2021-06-02_14:0...	20210602	140718	RIDER75	RIDER75	AE146F	United States	Unknown	40.27780151367...	.77.8262023925...	
	2021-06-03_19:0...	20210603	190857	RCH655	RCH655	AE1088	United States	Unknown	40.29809951782...	.77.7879028320...	
	วnว1.ก5.M2 19.n	2021n5.n?	19 nona	RCHCES	RCHCES	AF10RP	1 Initan Cratos	Ilanmmun	A 06709955957	. 77979294559	\checkmark

AircraftScatterSharp Original Features

Select distinct * from planes where ((lat > 40.2295917320315 and lat < 40.347569088201 and lon > -80.0538051144567 and lon < -79.9638123144566) or (lat > 40.2302344378764 and lat <

 and lat < 40.3518640253998 and lon >-79.5773630877508 and lon < -79.4873702877508) or (lat >40.2342778144107 and lat < 40.3522633583995 and lon >-79.5178040414498 and lon <-

 and lon <-79.0108822834893) or (lat > 40.2363683940673 and lat < 40.3543575914713 and lon > -79.0413122108094 and lon < -78.9513194108094) or (lat > 40.2364923950644 and lat <

 and lon >-78.2669926304427 and lon <-78.1769998304427) or (lat > 40.2353273568934 and lat < 40.3533147349737 and lon > -78.2074312822882 and lon<-78.1174384822882) or (lat >

 and lon > -77.1354657860525 and lon < -77.0454729860525) or (lat > 40.2243489346079 and lat < 40.3423171325159 and lon >-77.0759232332104 and lon < -76.9859304332104) or (lat >

 and lat < 40.3284384156952 and lon > -76.3020279060367 and lon <-76.2120351060367) or (lat > 40.2092153491789 and lat < 40.3271571248611 and lon > -76.2425114987438 and lon <-

 , date desc , time desc

AircraftScatterSharp New Features (2018-2019)

Doppler Calculations (value and rate of change)
Radar Cross Section modeling now with estimated RCS for more than 100 aircraft
Optionally, program will now automatically assign estimated RCS to selected aircraft using this model
Adjustable lower limits for altitude, elevation, and estimated RCS below which planes will not be displayed
Planes not meeting these limits will be removed from display
Plane icon size and color are indexed to estimated RCS
More extensive Manual Parameter Entry options including both static and dynamic modeling
Rolling terrain elevation reporting
N1MM-based rotor control

sun?

Try to use aircraft with minimal skew (<3-5 degrees) to maximize FSE
Try to use aircraft flying along inter-station path to maximize QSO time, maximize FSE and signal strength, minimize Doppler shift and its rate of change
Use a program like Aircraft Scatter Sharp to track aircraft in real time
Aircraft Scatter Sharp will also allow you to estimate signal levels, compare expected AS vs tropo signal levels, see estimated Doppler shift
Digital modes increase your likelihood of completing very-weak-signal QSOs (path losses greater than 200 dB); Formerly complex advice on which mode to use now replaced by simple "Use Q65-15C".
Whether or not you need to point at the aircraft rather than at the remote station depends on your beamwidth, horizontal skew angle, aircraft elevation

Links

https://w3sz.com/AircraftScatter.htm
https://w3sz.com/updates/
AircraftScatterSharp.exe

