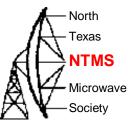
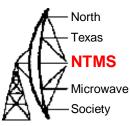
Texas Weather box June 4, 2022


KM5PO – KI5EMN

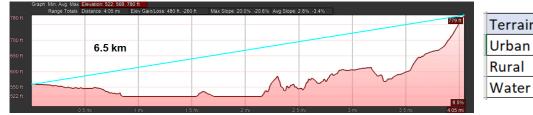
WWW.NTMS.ORG

W5HN

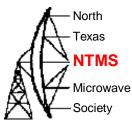

1

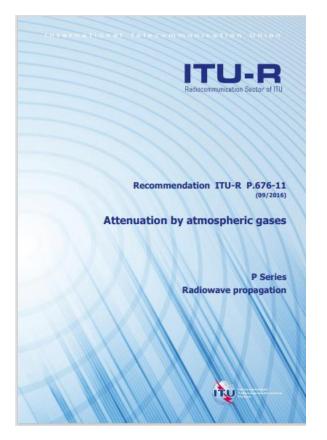
The learning curve

- Need to understand all factors of path loss at higher microwave frequencies to improve success.
 - We had a CW/599 success at 17 km then could not repeat one week later and had issues falling back to 6.5 km
- More testing needs to occur while taking weather measurement data in real time at operating points
 - Weatherbox simplifies accurate data capture
- Need comprehensive measured atmospheric data
 - "Along the path" measurements
 - Integration of additional probes
 - 3rd party weather reporting
- Refined characterization of system parameters
 - Dish & Feed alignment
 - Phase noise effects
 - External reference


Red Kites (thermal) day

Terrain	length	Percent
Urban	10.8 km	63.5%
Rural	3.8 km	22.4%
Water	2.4 km	14.1%


122.350 GH	lz/*s	ys parn	ns			Estimated/Predicted values								
	dx	Temp			Free S	Atmos	Tot	ТΧ		RX noise	RX Noise		Actual	
Date	km	С	RH	hPa	PL	GL	PL	EIRP	RX sig	Т/К	Power	RX S/N	S/N	Note
3/12/2022	17	13	15	1001.9	158.8	6.7	165.5	32	-115.5	4306.2	-135.3	19.8	15	0-5 knot wind
3/19/2022	17	24	15	978.5	158.8	7.5	166	32	-116.3	4306.2	-135.3	19	5	15 knot winds
							0.8		-0.8			-0.8		
TX:-3/TG:3	TX:-3/TG:35/RNF:12/RG:18/RBW:500													



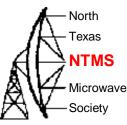
Terrain	length	Percent
Urban	4.3 km	66.2%
Rural	0 km	0.0%
Water	2.2 km	33.8%

• Did the observed thermal activity come from urban surface heating on the warmer day?

The Standard

This is our standard for calculating attenuation by atmospheric gases for frequencies 1-1000 GHz.

Contains the formulas and two tables that list frequency points and the related oxygen attenuation and water-vapor attenuation.


The Weatherbox code implements these tables and formulas. Thank you Barry G8AGN.

The Standard

(5)

(6b)

(7)

The line-shape factor is given by:

W5HN

$$F_i = \frac{f}{f_i} \left[\frac{\Delta f - \delta(f_i - f)}{(f_i - f)^2 + \Delta f^2} + \frac{\Delta f - \delta(f_i + f)}{(f_i + f)^2 + \Delta f^2} \right]$$

where f_i is the oxygen or water vapour line frequency and Δf is the width of the line:

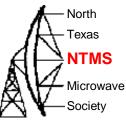
$$\Delta f = a_3 \times 10^{-4} (p \ \theta^{(0.8 - a_4)} + 1.1 e \ \theta) \qquad \text{for oxygen}$$
$$= b_3 \times 10^{-4} (p \ \theta^{b_4} + b_5 e \ \theta^{b_6}) \qquad \text{for water vapour} \tag{6a}$$

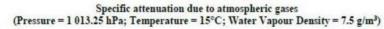
The line width Δf is modified to account for Zeeman splitting of oxygen lines and Doppler broadening of water vapour lines:

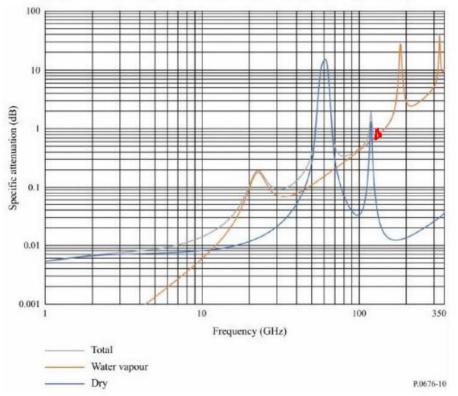
$$yf = \sqrt{\Delta f^2 + 2.25 \times 10^{-6}}$$
 for oxygen
= $0.535\Delta f + \sqrt{0.217\Delta f^2 + \frac{2.1316 \times 10^{-12} f_i^2}{\theta}}$ for water vapour

 δ is a correction factor that arises due to interference effects in oxygen lines:

$$\delta = (a_5 + a_6 \theta) \times 10^{-4} (p + e) \theta^{0.8}$$
 for oxy gen
= 0 for water vapour

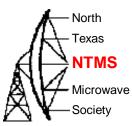

// water vapour sf = 0.0L; for (int i = 0; i < 35; i++) { s = 0.1L * b1[i] * e * pow(theta, 3.5L) * exp(b2[i] * (1.0L - theta)); df = 0.0001L * b3[i] * (p * pow(theta, b4[i]) + b5[i] * e * pow(theta, b6[i])); df1 = 0.535L * df; df = df1 + sqrt(0.217L * df * df + (2.1316e-12 * fw[i] * fw[i]) / theta); t1 = df / ((fw[i] - f) * (fw[i] - f) + df * df); t2 = df / ((fw[i] + f) * (fw[i] + f) + df * df); bf = f * (t1 + t2) / fw[i]; sf = sf + s * bf; }

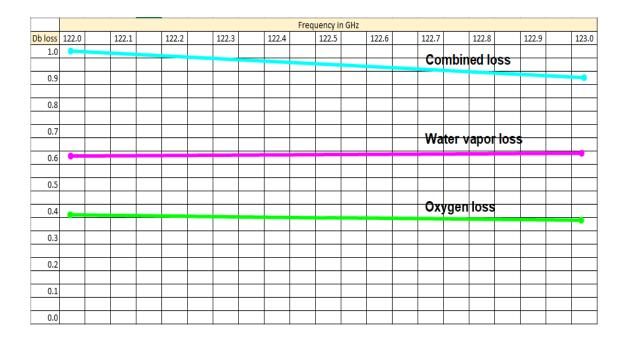

gammaw = 0.182L * f * sf * path_length;


// oxygen sf = 0.0L; for (int i = 0; i < 44; i++) { s = 0.0000001L * a1[i] * p * theta * theta * theta * exp(a2[i] * (1.0L - theta)); df = 0.0001L * a3[i] * (p * pow(theta, (0.8L - a4[i])) + 1.1L * e * theta); df = sqrt(df * df + 0.00000225L); delta = 0.0001L * (a5[i] + a6[i] * theta) * (p + e) * pow(theta, 0.8L); t1 = (df - delta * (fo[i] - f)) / ((fo[i] - f) * (fo[i] - f) + df * df); t2 = (df - delta * (fo[i] + f)) / ((fo[i] + f) * (fo[i] + f) + df * df); bf = f * (t1 + t2) / fo[i]; sf = sf + s * bf; }

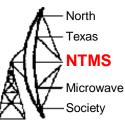
W5HN

Gas losses





- 118.75 GHz nearest peak
- Dry air O2 res, Water Vapor Density = Sea Level


Gas losses over the band

- dB/km losses calculated at 1000 hPa, 15C, 60% RH
- Operation at 123 GHz results in approx. .1 dB/km improvement (1.7 dB @ 17 km etc)

Effects of variables

Gas losses result from the effects of temperature, pressure and humidity .

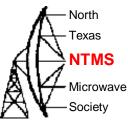
	Gas	
Temp C	Loss/km	
15	0.9	
25	1.3	
35	2.3	

- Vary temperature while maintaining 1000 hPa and 60% RH
- Tests done in cooler temps yet high RH will benefit us >1 dB

hPa	Gas Loss/km
950	0.86
1000	0.90
1050	0.91

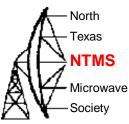
٠

- Vary pressure while maintaining temp 15C and 60% RH
 - Tests done in low pressure yet high RH will benefit us < .1 dB


RH		Gas Loss/km
	20	0.4
	40	0.6
	60	0.9

- Vary humidity while maintaining 1000 hPa and temp 15C
- Test done in low humidity yet high pressure will benefit us ~ .5 dB

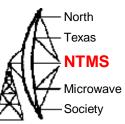
60% fixed RH = 4.76 gm/m3 at 5°C but 12.1 gm/m3 at 20°C


VIM-GLO-IND-Humidity-conversion-formulas-Technical-eBook-B210973EN-K.pdf (vaisala.com)

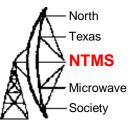
Summary

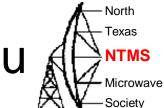
- Propagation studies at high microwave frequencies will remain a work in progress
 - Collect key data that impacts atmospheric gas losses and use a weatherbox or the online calculator (Path Loss Calculator (vk5microwave.net))
 - Share the data and your actual results
- Make tests on cool days since the atmosphere will hold less water regardless of RH reported
- Wind is not our friend
- Lower pressure yields slightly lower losses
- Operate high in the band

Texas weatherbox!



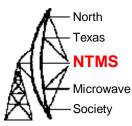
5" square


Same core functions


W5HN

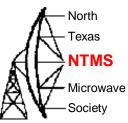
Features

- New form factor incorporating touchscreen
 - Inspired by KI5EMN
 - Nextion IDE for UI design/code
 - Nextion library required modifications (mods are documented in the Arduino sketch)
- Same peripherals
 - GPS
 - BME280 humidity/temperature sensor
 - SD-card interface
- Same core path loss calculation code with ITU implemented attenuation formulas by Barry G8AGN



Screen flow-Splash & Help Menu

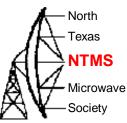
Screen flow-Data Entry



Loads the current default system parameters which can be changed here and then saved.

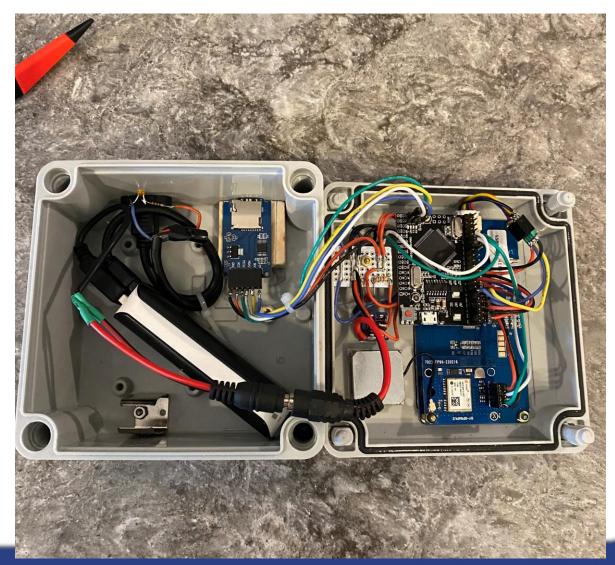
Exiting this menu takes you back to the Help Menu

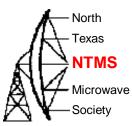
Screen flow-Logging



WWW.NTMS.ORG

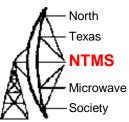
15


Screen flow-Memory

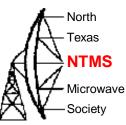


W5HN

Inside

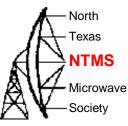


W5HN


Inside

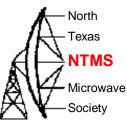
W5HN

Logging

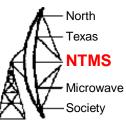

EM12MU78UI 40622 122.350 17.0 0.50 40 18 12 0.5

time p t RH H20 GL PL C/N

13:45,997.1,23.1,75.6,15.7,28.1,186.9,3.3,182.6,EM12MU78UI 13:47,997.6,23.1,75.5,15.7,28.1,186.9,3.3,190.9,EM12MU78UJ 13:48,997.4,23.5,75.0,15.9,28.4,187.3,3.0,192.6,EM12MU78UI 13:49,997.4,23.7,73.9,15.8,28.2,187.1,3.2,189.0,EM12MU78UI 13:50,997.3,24.1,72.9,16.0,28.4,187.2,3.0,165.7,EM12MU78UH 13:51,997.2,24.5,72.0,16.1,28.5,187.3,2.9,128.7,EM12MU78UH 13:52,997.0,24.5,71.4,16.0,28.3,187.1,3.2,163.8,EM12MU78UH 13:53,997.7,24.1,71.0,15.6,27.6,186.4,3.9,155.7,EM12MU78UH 13:54,996.9,24.5,71.6,16.0,28.3,187.2,3.1,154.4,EM12MU78UH 13:55,997.4,24.5,70.0,15.7,27.7,186.5,3.7,183.0,EM12MU78UI 13:56,997.2,25.0,69.7,16.0,28.2,187.0,3.3,198.0,EM12MU78UI 13:57,996.9,25.1,68.7,15.9,27.9,186.7,3.5,177.4,EM12MU78UI 13:58,996.8,26.2,65.7,16.2,28.0,186.8,3.5,171.1,EM12MU78UI 13:59,998.4,25.5,65.7,15.6,27.2,186.0,4.3,163.9,EM12MU78UG 14:00,997.2,25.5,66.6,15.8,27.5,186.3,3.9,162.7,EM12MU78UH 14:01,997.2,25.4,67.0,15.8,27.5,186.3,3.9,150.4,EM12MU78UH 14:02,998.0,25.6,66.7,15.9,27.7,186.5,3.8,145.3,EM12MU78UH 14:03,997.6,25.4,66.1,15.6,27.2,186.0,4.2,145.0,EM12MU78UH 14:04,996.9,26.2,64.7,16.0,27.6,186.4,3.9,152.9,EM12MU78UH 14:05,996.8,27.1,62.3,16.2,27.7,186.5,3.8,154.1,EM12MU78UH 14:06,996.7,27.1,62.0,16.1,27.4,186.3,4.0,143.5,EM12MU78TI 14:07,997.2,27.2,61.2,16.0,27.3,186.1,4.2,152.7,EM12MU78UI 14:08,997.3,26.7,62.0,15.7,26.9,185.7,4.5,155.8,EM12MU78UI 14:09,997.4,27.8,59.8,16.1,27.3,186.1,4.1,151.5,EM12MU78UH 14:10,997.5,26.5,62.2,15.6,26.8,185.6,4.6,152.8,EM12MU78UI 14:11,997.0,26.7,62.2,15.8,27.1,185.9,4.3,156.6,EM12MU78UI 14:12,997.5,28.5,57.6,16.1,27.1,185.9,4.4,154.2,EM12MU78UI 14:13,997.0,27.8,58.7,15.8,26.8,185.6,4.7,158.1,EM12MU78UI 14:14,996.6,28.1,58.2,15.9,26.9,185.7,4.6,153.5,EM12MU78UI 14:15,996.4,29.4,54.9,16.1,26.8,185.6,4.7,152.6,EM12MU78UH


W5HN

Pin out guide


	GPS pin	Mega 2560 pin			
CDS modulo	VCC	5V			
GPS module - NEO-6 or 7 GPS	Gnd	Gnd			
NEO-0 OF 7 GPS	ТХ	19 (RX1)			
	RX	18 (TX1)			
	Sensor pin	Mega 2560 pin			
Bosch BME280	VCC	3.3V			
	Gnd	Gnd			
weather sensor	SDA	20(SDA)			
	SCL	21(SCL)			
	SD card pin	Mega 2560 pin			
SD Card Interface	MISO	50			
board	MOSI	51			
Doard	SCLK	52			
	CS	53			
	Nextion pin	Mega 2560 pin			
	VCC	5V			
Nextion Display	Gnd	Gnd			
	RX1	Tx0			
	TXO	Rx0			

Next steps

- Graphing
- Fit remote sensor and GPS via cat5
 - Remote sensor tests good on bench with 25 feet cat5
- API for cloud-based log collection/aggregation
 - Start by uploading current logs for integration
- Develop weather probe idea
- Get outdoors and test!

Questions?

