ENHANCED PROPAGATION MICROWAVE EVENTS

A PRIMER / WIDE AREA OPENING CASE-STUDIES JOE JURECKA – N5PYK NATIONAL WEATHER SERVICE LUBBOCK, TEXAS

0

MOTIVATION

- Who doesn't like a great band opening?
- How does it work?
- What weather patterns support large-scale openings?
- Why are some openings larger and stronger than others?

K-FACTOR

Ratio of effective radius of radio wave ray vs. radius of earth (6370km)

K=radius of propagation/radius of earth

Normally about a 1.4X distance multiplier on VHF.

Important for understanding enhanced propagation

SCHEMATIC OF PROFILE (REFRACTION) THE BASIS FOR OPENINGS

LOCAL ENHANCEMENT (TROPOSPHERIC REFRACTION)

- Accomplished with single hop off inversion layer aloft
- Often a single thermal inversion layer aloft...sometimes very close to the ground
- Not generally spatially widespread

Very useful on microwave on spring and summer mornings and evenings!

REFRACTION MODES

REFRACTION CATEGORIES

The different propagation regimes of a ground-based radar beam emitted with a small tilt angle a above the horizontal plane: subrefraction (SUB), normal refraction (NORM), superrefraction (SUPR), and ducting (DUCT). The corresponding values of refractivity gradient N/Jz are indicated above each beam path. The dashed line indicates the top of the duct.

Change of N with height	Mode
$\partial N/\partial z > 0$	Subrefraction
$0 \ge \partial N/\partial z \ge -0.0787 \text{ m}^{-1}$	Normal refraction
$-0.0787 \ge \partial N/\partial z \ge -0.157 \text{ m}^{-1}$	Superrefraction
$-0.157 \ge \partial N/\partial z$	Ducting

Steiner and Smith (2002)

https://journals.ametsoc.org/doi/full/10.1175/2008JAMC1961.1

Ω

. Duct types as a function of the shape of the M vertical profile: (a) surface duct, (b) S-shaped surface duct, and (c) elevated duct. Gray shading identifies the trapping layer (TL)

https://journals.ametsoc.org/doi/full/10.1175/2008JAMC1961.1 https://journals.ametsoc.org/doi/pdf/10.1175/2010JAMC2415.1

FIG. 1. Schematic representation of (a) modified refractivity profile labeled with refractive layers and duct characteristics (duct strength, base height, and thickness) and (b) the three slope values (dM/dz) that delineate the four refractivity regimes: subrefraction, normal refraction, superrefraction, and trapping.

INVERSION THICKNESS VS. FREQUENCY

Inversion Thickness		LUF				
Feet	Metres	Band	M/GHz			
50	15	μW	11.67 GHz			
100	30	μW	3.35 GHz			
150	46	UHF	1615 MHz			
200	61	UHF	962 MHz			
300	91	UHF	464 MHz			
400	122	VHF	276 MHz			
500	152	VHF	185 MHz			
600	183	VHF	133 MHz			
700	213	VHF	101 MHz			
800	244	VHF	79 MHz			
900	274	VHF	64 MHz			
1000	305	VHF	53 MHz			
1100	335	VHF	45 MHz			
1200	366	VHF	38 MHz			
1300	396	VHF	33 MHz			
1400	427	SW	29 MHz			
1500	457	SW	26 MHz			

Figure 6. Frequencies Trapped with Respect to Duct Thickness

https://apps.dtic.mil/dtic/tr/fulltext/u2/a034073.pdf

DUCTING FREQUENCY

DUCTING FREQUENCY

<u>https://journals.ametsoc.org/doi/full/10.1175/2008JAMC1961.1</u>

THE MIRAGE: A VISUAL ANALOGY FOR MICROWAVE REFRATCION

• <u>https://media.mnn.com/assets/images/2017/03/desert-mirage.jpg.638x0_q80_crop-smart.jpg</u>

LIDAR VERTICAL CROSS SECTION

KWAJALEIN

A sphere with a known radar cross section was dropped at a range of 25km

Note the sharp signal increase below 30m due to the low level evaporation duct over the sea

Was noted that frequencies below S band were not enhanced

Fig. 1. Measured and calculated returns at ALCOR from a sphere dropped over the sea; range 24.7 km, altitude of ALCOR antenna ll m. ALCOR data furnished by L. Thurman and M. Rockowitz, Lincoln Laboratory.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a057117.pdf

/ Ç

TROPOSPHERIC DUCTING

- Can enable contacts over distances of over a thousand miles.
- RF signal is propagated in duct
- Much variance exists on where signal exits the duct
- Signal can pass right over some users (elevated trapping ducts) such that it is possible to work stations from Texas to Florida but not into Mississippi

https://www.spc.noaa.gov/exper/soundings/

(

THE SOUNDING IS ONLY PART OF THE STORY

• Like in the mirage example, the weather must be very stable to propagate effectively.

Imagine the following analogy of an inversion (akin to a mirror)

Good Still subject to multipath fading (Fresnel zones) Unfavorable

EFFECTS ON WEATHER RADAR

Image of WSR-88D radar data with Gaussian Model Adaptive Processing (GMAP) enabled under super-refraction conditions

 $F_0 \sim 3 \text{ GHz}$

EFFECTS ON WEATHER RADAR

10 minutes later with clutter suppression disabled

CASE STUDIES

10 GHZ AND UP

 \cap

Q

 \bigcirc

 \bigcirc

 \bigcirc

 \cap

DATE	FREQ.	MODE	POWER	TIME	STATION WORKED	REF	PORT REC'D	TIME OFF	QTH	COMMENTS NAME	QSL VIA	Q: S	SL R
8-15	144	USB	IKW	2303	WB9Z	59	59	2303	Allinois	Serry	ENGO	X	X
8-16	п	п	t I	1334	K8ZES	59	59	1334	New york	Sid	FN02	1	\checkmark
	n	μ	11	1334	WBSWIV	59	59	1335	mechigan	Tom	EN74	1	1
	222	u	:1	1339	WAIMKE/9	59	59	1339	Indiana	Dave	EN70	1	\checkmark
	u	W	11 411	1340	VESTFU	59	59	1340	Canada	Steve	EN93	\checkmark	~
	n	11	- 13	1341	K8ZES	59	59	1341	New York	Sid	FN02	\checkmark	\checkmark
	144	D	ц	1346	KF8DX	59	59	1346	Michigan	Tom	EN72	1	\checkmark
	Ц	ł(η	1352	N2CET/8	59	59	1352	Ohio	Steve	EN81	Х	\times
	432	11	11	1355	WASWZG	59	59	1355	Obio	TOM	1843	Х	X
	1296	cw	150	1405	WASWZG	599	599	1405	Ohio	Tom	EN81	V	1
	2304	Ц	100	1411	WA8WZ4	599	599	1411	Ohio	Tom	EN81	1	~
	144	USB	IKW	1431	NZXTX	59	59	1431	new york	Dave	FN02	Х	\times
	u	21	11	1455	VEBTFU	59	59	1455	Canada	Steve	EN93	\checkmark	\checkmark
8-17	3456	cω	45	0032	WA8WZG	559	599	0032	Ohio	TOM	EN81	~	1
	5760	ı.	п	0042	WASWZG .	599	599	0042	Orio	Tom	EN81	1	1
		USB.	ù.	0043	WASWZG	59	59	0043	Ohio	TOM	EN81	1	1
	10368	cw	50	0049	WASWZG	599	599	0049	Ohio	Tom	EN81	1	~
		USB		0049	WASWZG	59	59	0049	Ohio	Tom	EN81	/	1
	432	cw	IKW	0100	WASRJF	559	599	0100	Dhio	Tony	EN91	\checkmark	\checkmark
		USB	ti.	0106	KC8CSD	59	59	0106	Ohio	Sean	ENS1	Х	X
	144	ц	14	0116	WASRJF	59	59	0116	phio	Tony	EN91	1	~
	222	13	h	0118	WASRJE	59	59	0118	Ohio	Tony	ENGI	\checkmark	V
	11	11	U	0122	KC8CSD	59	59	0122	Dhip	Sean	EN81	X	X
	144	11	.11	0123	KC8CSD	59	59	0123	Ohio	Dean	EN81	X	Х
	п	P	jî.	0124	N8XQM	59	59	0124	phip	Doug	ENGI	\times	X

W5ZN (EM45dh) to WA8WZG (EN81om)

17 Aug 1999 (0032Z-0049Z)

C

 \mathcal{O} Y Plymouth State Weather Center Y WXP analysis for 00Z 17 AUG 99 Surface Surface Surface Dev Surface Visibility (mi) N 3.3 13.5 14.5 18.0 19.2 16.0 13.3 13.6 11.6 11.7 10.6 8.3 8.2 9.5 10.6 16.7 16.6 44.6 63 62 61 68.1 13.2 13.8 9 12.2 D114 583 10.4 12.2 12.9 12.0 11.5 52 11.2 12.7 11.6 12.0 ()1.1 8.8 8.5 1.9 13.0 16.8 13.7 59 59 70 7.8 11.3 12.0 1.5 11.4 10.9 11.4 11.5 11.0 10.3 10.4 40.8 12 10.1 13.1 1 9.5 9 71 - Base 410 7.4 9.3 11.0 14.2 14.8 13.8 13.5 13.0 13.7 12.9 11.3 10.2 10.1 11.9 69 / 133 14.4 16.3 12.5 12.5 14.9 14.3 15.4 12.9 10. 10.2 10.4 1.0 10.6 50 13 16.1 18.3 18.3 13/3 12.3 17.6 15.0 12.5 10.0 10.2 9.5 10.3 1 10.8 47 6.5 18.0 9.7 8.9 88.7 18.6 7.2 7.4 12.9 16.1 17.5 13.4 14.4 13.5 10.5 10.1 9.9 9.9 10.2 126 10.4 56 46 74 29 15.9 20.2 14.0 19.7 15.1 11.2 11.0 0.0 9.8 9.9 10,0 10.1 N.7 6.9 6.1 5.6 18.1 9.9 9/9 9.2 an 46 69 13.1 18.3 18.3 .5 14.0 15.5 97 96 100 10.2 8.8 7.1 75 14.1 9.9 9.7 9.6 7.5 9.4 10.1 7.6 69 55 49 10.7 14.1 (20.3 20.9 19.5 10.9 10.9 8.7 13.0 10.1 11.0 10.4 10.3 10.2 10.3 9.4 6.9 7.8 10.4 11.7 12 11.4 8Z 58 69 59 59 645 8.3 9.5 12/8 20.7 197 11.6 14.9 15.1 10.7 10.5 10.5 10.5 10.7 \$.8 8.7 8.9 8.7 8.3 8.0 11.5 12.4 1 7.6 69 62 63 9 13.1 11.8 .3 22.6 26.9 12.8 18.7 17.0 10.8 9.7 9.8 10.2 9.7 8.4 8.5 8.Z 9.1 39.0 9.3 12.0 12.9 15 **D** 71 60 129 D 62 10.5 22.6 12.3 14 5 13.5 11.6 9.9 9.6 9.9 9.6 9.3 9.6 12.5 11.2 14.9 8.6 9.2 9.9 63 10.0 9.7 10.2 10.0 9 69 64 11.7 7.5 7.6 8.6 11.0 11.4 13.0 12.8 10.9 9.7 9.5 9.5 9.3 8.7 8.5 9.5 10.0 9.7 9.5 9.6 no 15 68 6 6.8 10.3 12.9 9.7 10.1 10.1 9.5 10.4 12.0 11.3 11.1 12.3 11.2 8.8 3 10.6 5.8 8.8 8.2 11.1 9.5 13 71 66 66 18 LO: 4.13 HI: 26.9

7 Sept 2002 24 GHz US Record W5LUA-WW2R 1215Z 10G & 24G

4 June 2012 10 GHz W5LUA-K0VXM 1148Z

4 June 2012 10 GHz W5LUA-K0VXM 1148Z

PACMISTESTCENT'S THUMB RULES (MARITIME) 1/3

Factors favorable to Elevated Duct Occurrence

- Location within SE and SW quadrants of subtropical highs (for Bermuda area, SW and NW quadrants)
- 2. Anticyclonic curvature of surface isobars
- 3. Decreasing distance to center of high
- 4. Increasing surface pressure (especially PS > 1015 mB)
- 5. T_{sfc} - T_{700} < 15°C or T_{700} = 5 to 10°C
- 6. Location outside active frontal zone

These are maritime rules and some variations exist for over-land paths

Ref: TP 000005

PACMISTESTCENT'S THUMB RULES (MARITIME) 2/3

Factors favorable to Elevated Duct Occurrence

- 7. Presence of well-defined haze-layers
- 8. Presence of stratus clouds (not accompanied by rain. Draizzle from stratus is acceptable) Note: Overland amateur contacts seem to favor clear skies
- 9. Extensive stratus or stratocumulus sheet observed on visual or infrared satellite imagery with granular or cellular appearance
- 10. Evidence of a temperature inversion
- 11. Weak winds aloft
- 12. Lack of extensive and thick mid-level cloudiness

These are maritime rules and some variations exist for over-land paths

Ref: TP 000005

PACMISTESTCENT'S THUMB RULES (MARITIME) 3/3

Factors favorable to Surface Based (Non-evaporative) Ducts

- 1. Warm (temperatures higher than sea surface temperature), dry offshore flow
- 2. Stratus or fog deck with top at 1,000' or below
- 3. Large hole within stratus covered areas as observed on satellite imagery, or similar stratus-surrounded clear region extending seaward from continent
- 4. Stars or moon dimly visible through dense surface fog
- 5. Very smooth, white and uniform stratus observed on visual satellite imgery (as compared with more typical granular or cellular appearance)

Additional guidance and point system available within reference document

Ref: TP 000005

SUMMARY

Many factors must align for great microwave DX

- Vertical refractivity gradient
- Appropriate duct thickness
- Very stable duct region
- Homogenous conditions across a wide area
- Generally observed with mostly clear skies on-land

WHAT TO LOOK FOR LAND BASED OPENINGS

- Strong high pressure areas generally to the east of path
- Draping Stationary front north of the desired path
- Low surface wind speeds (often < 10 mph)
- Moist surface conditions (often dewpoints $> 59^{\circ}F$ (15°C) or higher)
- Temperature inversion in soundings
- Evidence of ducting in thermal profile

SPECIAL THANKS TO...

W5LUA - Al Ward

W5ZN – Joel Harrison

REFERENCES

- Freeman, R.L. Radio System Design for Telecommunications (1-100 GHz) John Wiley, 1987.
- Lopez, P., 2009: <u>A 5-yr 40-km-Resolution Global Climatology of Superrefraction for Ground-Based</u> <u>Weather Radars.</u> J. Appl. Meteor. Climatol., **48**, 89–110, <u>https://doi.org/10.1175/2008JAMC1961.1</u>
- Steiner, M., and J. A. Smith, 2002: <u>Use of three-dimensional reflectivity structure for automated detection</u> and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., **19**, 673–686
- Culbertson, Gary W. Assessments of atmospheric effects on VHF and UHF communications. NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 1990. https://apps.dtic.mil/dtic/tr/fulltext/u2/a226661.pdf
- Naval Electronics Laboratory Center Technical Note 3263, An Evaluation of the Refractive Effects Guidebook (REG), by Glevy, D.F. and Logue, L.E., 02 December 1976.
- Commander third Fleet TACMEMO 280-1-76, Refractive Effects Guidebook, by J.S. Rosenthal, ... September 1976.
- Pacific Missile Test Center Technical Publication TP 000005, Guide for Inferring Refractive Conditions fiom Synoptic Parameters, by Helvey, R.A. and Rosenthal, J.S., 14 March 1983.