Small Dish Portable EME

By Rex Moncur VK7MO

OK1KIR 10 & 24 GHz Digital Grids in VK/ZL

10 GHz 24 GHz

How do small portable stations work EME?

Use digital modes & work big home stations.

10 GHz 2'6" Dish & 60 watts

24 GHz 4 foot Dish & 20 watts

HB9Q 32 foot Solid Dish 60 watts

OK1KIR 16 foot solid Dish 50 watts

OK1CA, 14 foot dish 50 watts

G3WDG 10 foot dish, 75 watts

OZ1LPR 8 foot offset,650 Watts

W5LUA 16 foot dish, 50 or 160 Watts

OK2AQ 4 foot dish and 40 watts

EME Propagation Loss

Increases by 20 dB for every 10 times increase in frequency

• 144 MHz 253 dB

• 1296 MHz 271 dB

• 10,368 MHz 290 dB

37 dB additional loss from 144 MHz to 10 GHz

Antenna Gain for same Aperture

- Increases by 20 dB for each 10 times increase in frequency and so fully compensates for propagation loss.
- But the antenna gain applies both ends so you gain 20 dB for each 10 times increase in frequency.
- The penalty is that you must point accurately

System Noise

- Generally lower at 10 GHz compared to say 144 MHz were external noise, particularly in city areas, dominates.
- Moon Noise produces around 2 dB loss with high gain dishes (10 foot plus at 10 GHz)

Atmospheric Attenuation and Noise

Precipitable Water, Grey 5 mm Yellow 60 mm

Lunar Degradation

- The Moon moves around the Earth in an elliptical orbit which cases a variation of around 2.3 dB.
- For QRP choose a time when lunar degradation is low

Doppler Shift (10 GHz)

Doppler Spreading

Doppler Spreading

10 GHz Spreading 160 Hz to 2 Hz

Variation of Spreading at 10 GHz

Program and Modes

- WSJT Program developed by Joe Taylor, K1JT and Development Team.
- Modes for EME -- JT65, JT4 and QRA64.
- QRA64 is best for spreading up to 160 Hz, does not require a callsign list but takes advantage of information built up during a QSO.
- QRA64 is virtually immune from false decodes
- QRA64D has become the standard for both 10 and 24 GHz EME.

QRA64: Doppler Spreading Loss

Variation of Propagation Loss with Conditions

- 5 Hz to 150 Hz spreading costs about 6dB
- Lunar degradation varies up to 2.3 dB
- Moon noise on a 10 foot dish costs about 2 dB compared to a 2'6" dish

Best case to worst case costs about 10 dB

Options

	Best Conditions	Worst Conditions
2'6" to 10 foot	2 Watts	20 Watts
2'6" to 4 foot	15 Watts	too much
4 foot to 10 foot	1 Watt	10 Watts
4 foot to 4 foot	6 Watts	60 Watts

Small Horns

0958 -23	2.5 1002	; *	VK7MO HB9Q JN47	0
0959 -23	2.6 1005	*	VK7MO G3WDG IO92	Ŏ
1000 -23	2.5 1003	; *	VK7MO HB9Q JN47	0
1001 -23	2.5 999	; *	VK7MO G3WDG IO92	0
1002 -22	2.5 997	; *	VK7MO HB9Q JN47	0
1003 -22	2.2 1000	: *	HI REX	0
1004 -23	2.5 1002	; *	VK7MO HB9Q JN47	0
1005 -24	2.2 998	; *	REX RX 25DB H	0
1006 -22	2.5 1005	; *	VK7MO HB9Q JN47	0
1007 -24	2.2 1005	÷	REX RX 25DB H	0
1008 -25	2.5 997	· *		·
1009 -23	2.5 1001	; *	VK7MO G3WDG -15	0
1010 -25	2.5 1002	; *	GE DEAR REX	0
1010 -25				
1011 -25	2.6 1002	; *	VK7MO G3WDG -15	0
1012 -21	2.5 998	∵ *		_
1013 -23	2.5 1002	; *	VK7MO G3WDG -15	0
1014 -24	2.5 1000	: *	12345	0
1015 -21	2.5 1001	; *	QWERTYUIOP	0
1016 -21	2.5 1002	; *	_	
1017 -23	2.5 1000	; *	VK7MO G3WDG IO92	0
1018 -25	2.6 1002	; *	EXCELLENT REX	Ö
1019 -25	2.5 1002	: *	VK7MO G3WDG IO92	ŏ
1020 -21	2.5 1003	; *	VR/HO 95WD9 10/2	
1020 -21	2.5 1000	; *	VK7MO G3WDG IO92	0
1022 -25			EXCELLENT REX	0
		; *		
1023 -22	2.5 1002	; *	VK7MO G3WDG IO92	0
1024 -24	2.5 1004	; *	VK7MO HB9Q R-15	0
1025 -21	2.6 1001	; *	VK7MO G3WDG IO92	0
1026 -24	2.6 1003	; *	VK7MO HB9Q R-15	0
1027 -22	2.6 1003	*	VK7MO G3WDG IO92	Ō
1028 -25	2.5 1001	*	VK7MO HB9O RRR	ŏ
1029 -24	2.2 997	*	VK7MO G3WDG IO92	ŏ
1030 -24	2.5 1002		GN REX 73	0
1030 -24	2.5 1002	: *	GN REA /3	U

Monitoring G3WDG and HB9Q on a 25 dBi Horn 7x9 inch Aperture

Small Horns & DLOSHF Beacon

7x9 inch

4x5 inch

0720 -24	2.5 1000 :*	CQ DLOSHF JO54	1
0722 -22	2.6 1002 :*	CQ DLOSHF JO54	0
0724 -22	2.5 1003 :*	CQ DLOSHF JO54	0
0726 -22	2.5 999 :*	CQ DLOSHF JO54	0
0728 -23	2.6 1000 :*	CQ DLOSHF JO54	0
0730 -22	2.5 1000 :*	CQ DLOSHF JO54	0
0732 -23	2.5 1002 :*	CQ DLOSHF JO54	0
0734 -23	2.5 991 :*	CQ DLOSHF JO54	0
0736 -24	2.5 1000 :*	CQ DLOSHF JO54	1
0738 -22	2.5 1000 :*	CQ DLOSHF JO54	0
0740 -24	2.5 1002 :*	CQ DLOSHF JO54	1
0742 -22	2.6 1002 :*	CQ DLOSHF JO54	1

0812	-23	2.5	994	:*				
0814	-27	2.4	1004	:*	CQ	DLOSHF	J054	11
0816	-24	-0.0	1000	:*				
0818	-28	2.2	998	:*	CQ	DLOSHF	J054	11
0820	-21	2.4	1007	:*				
0822	-25	2.4	1001	:*	CQ	DLOSHF	J054	9
0824	-23	2.4	994	:*				
0826	-27	2.4	999	:*	CQ	DLOSHF	J054	11
0828	-24	3.8	990	:*				
0830	-27	2.4	1001	:*	CQ	DLOSHF	J054	9
0832	-28	2.4	1000	:*	CQ	DLOSHF	J054	11
0834	-26	2.4	1001	:*	CQ	DLOSHF	J054	11
0836	-22	2.5	1000	: *				

Rxing DLOSHF Beacon on a Yagi


```
0642 -27 2.4 998 :* CQ DL0SHF JO54
0644 -23 2.5 998 :*
0646 - 25 1.9 1001 :
0648 -28 2.5 996 :* CQ DL0SHF JO54
0650 -26 2.3 995 :* CQ DL0SHF JO54
0652 -26 2.5 1003 :* CQ DL0SHF JO54
0654 -23 2.6 999 :*
0656 -23 2.0 1007 :*
0658 - 26 2.5 998 : * CQ DL0SHF JO54
                                        11
0700 -24 0.5 1005 :*
0702 - 26 2.4 997 : * CQ DL0SHF JO54
0704 -28 2.4 1001 :* CQ DL0SHF JO54
0706 - 26 0.6 1010 :
0708 -23 1.0 1010 :*
0710 -25 3.3 1010 :*
0712 -28 2.4 999 :* CQ DL0SHF JO54
0714 -29 2.3 996 :* CQ DL0SHF JO54
```

QSO on Longer 4X5 inch Horn with 90 watt PA

Spreading 23 Hz and Lunar Degradation 0.5 dB

Received by VK7MO

```
0925 -23 -0.6 998 :*
0927 -22 2.0 1004 :*
0929 -23 2.6 1000 :* VK7MO G3WDG IO92 5
0931 -27 2.6 1001 :* VK7MO G3WDG IO92 8
6933 -26 2.5 1004 :* VK7MO G3WDG IO92 5
0935 -23 2.7 1002 :* VK7MO G3WDG R-26 5
0937 -27 2.6 1002 :* VK7MO G3WDG RRR 5
0939 -24 0.2 1009 :*
0941 -23 2.4 1003 :*
0943 -23 2.4 999 :*
0945 -24 2.5 1000 :*
0947 -23 2.6 999 :*
0949 -24 2.6 992 :*
0951 -23 2.6 998 :* VK7MO G3WDG -26 3
0953 -27 2.6 1006 :* VK7MO G3WDG -26 5
```

Received by G3WDG

Critical Factors for Small Station 10 GHz EME

Accurate pointing in all conditions.

Frequency – GPS locking & Doppler correction.

System Performance – Sun noise

Reliability – equipment and operators.

Pointing

Alignment of Riflescope and Dish

Azimuth References

Elevation

POLARISATION

Sun Noise on 2'6"dish

Moon Noise on 2'6"dish

24 GHz World Record G3WDG 17405 km

Reducing Water Vapour Losses

System Loss with Atmospheric Att.

Extending 24 GHz Record to 17464 km (G3WDG)

World Record 10 GHz EME 18949 km (WA3LBI)

Take-offs

VK7MO 4 foot Dish at Meelup

WA3LBI 2.4 meter dish & Take-off

Operating Position

WA3LBI

VK7MO

WR Decodes (18951 km)

Rxed at VK7MO

Rxed at WA3LBI

```
WASLEI VK7MO OF76
                      WASLBI
1322 -21
         2.5 1015
                      WR 18950
                                              n
1324 -20
         2.7 1013
                      WR 18950
1326 -20
         2.6 1014
                       TNX JIM 73
1328 -21
         2.6 1011
                    : * CONGRATS
1330 -18 2.6 1012
                      CONGRATS
                                              0
1332 -21
              1008
              1010
                      WASLBI VK7MO OF76
                                              П
```

Extending 10 GHz EME World Record

Getting a Dish to ZL

Compact, Light-weight Design

Eclipse Composites Engineering has teamed with Optim Microwave to produce an affordable 'off-theshelf' antenna system. Designed for use in military, emergency, exploratory and SNG applications requiring easy transport and rapid deployment.

- · 50% lighter than aluminum
- · Less than 2 minute reflector assembly time
- Multiband reflector (X, Ku, Ka-band)
- Removeable Feed
- Identical, Interchangeable petals
- No particular order of assembly
- Mil-Std 810G Environmental Compliance
- 45 Km/h Wind Load
- Painted / Cerakote Options available
- Patented Design

Another Option

No	Description	Sefere Wrapping	Wrappod	In Juggage Case
2	e Petala for Diah	F		
2	Contro of Dish			
5	6 King Socions			
*	SlowSon Mount			
•	5/5 inch Triped to IFN4 adapter			

Cabin Bag

Extending 10 GHz EME World Record

While Height allows a lower angle atmospheric attenuation increases

Low angle Loss on RX

Absorption and Sea Noise with Polarization

Knights Point, ZL

G3WDG at Start Point IO80ef

Decodes at ZL/VK7MO

```
1801 -21 2.8 1010 :*
1803 -27 2.9 1016 :
1805 -22 2.9 1015 :* ZL/VK7MO G3WDG
1807 -21 2.9 1014 :* VK7MO G3WDG R-24
1809 -21 2.9 1014 :* VK7MO G3WDG -23
1811 -23 2.9 1013 :* VK7MO G3WDG 73
1813 -27 2.9 1012 :
1815 -23 2.8 1015 :* TNX SO HAPPY
1817 -20 2.9 1013 :* TNX SO HAPPY
1819 -20 2.9 1015 :* TT FB 19105
1821 -20 2.9 1015 :* TNX WR 73
1823 -25 2.9 1013 :*
1825 -22 2.9 1013 :* VK7MO G3WDG -20
1827 -22 2.9 1015 :* VK7MO G3WDG -21
1829 -23 2.9 1014 :* VK7MO G3WDG T080
1831 -21 2.9 1012 :* VK7MO G3WDG RRR
1833 -23 2.9 1014 :* VK7MO G3WDG 73
1835 -29 2.9 1016 :
1837 -29 1.2 1011 :
1839 -29 1.5 1019 :
1841 -29 2.0 1003 :
1843 -29 0.7 1003 :
```

Single tone 73 at -1.0 degrees

Success -- 19106 km

