GNU Radio

Workshop

Presented at Microwave Update
October 3 2019

Lewisville, Texas

Microwave Update 2019 oRTH
Sponsored by: o
North Texas Microwave Society MICROWAVE

Publish by:

ARRL Logo

Copyright © 2019 by
The American Radio Relay League

Copyright secured under the Pan-American Convention.
International Copyright secured.

All rights reserved. No part of this work may be reproduced in any form except by
written permision of the publisher. All rights or translation reserved.

Printed in USA.

Quedan reservados todos los derechos.

ISBN: XXXXXXXXXXXX

First Edition

Cover photo credit if any.

Table of Contents

Introduction
Slides presented at workshop
Additional Information supporting GNU Radio

References

Introduction

With the growing use of software defined radio (SDR) in commu-
nications and Amateur Radio this workshop is an effort to teach the
application and approach which may be followed by people inter-
ested in developing their own working radio systems using GNU
Radio. GNU Radio (GNR) is a tool developed for simulation and
implementation of SDR concepts. GNR is dynamic as it is growing
in its capability and expanding the number of physical hardware
supported. This growth will likely continue especially as the sup-
ported hardware evolves.

GNR allows you to quickly get productive results and make changes
in the operation or performance of your equipment. Its a powerful
learning tool.

While the idea of learning about Digital Signal Processing (DSP)
and the methods needed to implement a complete radio may seem
overwhelming to many. GNR is just the tool to help you evolve into
this space without too much pain.

We hope your participation in the workshop and for those of you
that obtain the material later find this enjoyable and contribute to
the continued development in your own way. You will be able to de-
velop working systems and we hope you use them and share them
with everyone.

Microwave Update 2019
Gnuradio Workshop

October 3, 2019

Tom McDermott, NSEG
Bob Stricklin, NSBRG
Jenner Lochridge, KK6RUM

NOTES:

GNU Radio Microwave Update 2019

Agenda

1. Install Gnuradio on Windows 10 64-bit OS.
2. Review of GNU Radio capabilities and core concepts.

3. Review of important GNU Radio modules, building a project,
implementing and running projects involving hardware.

4. Use of Gnuradio Companion (GRC) graphical environment.

5. Demonstration of Gnuradio Companion (GRC) application
with SDR Radio.

6. ldeas, Examples, and Hints
7. After Seminar — Breakout sessions with different radio demos.

NOTES:

2 GNU Radio Microwave Update 2019

Exercises & Demo

1. Load existing flowgraph from file, and run.
« Real signals and Spectra

2. Modify flowgraph from Exercise #1.
« Complex signals and Spectra.

3. Add noise and low pass filtering.

* Tap spectrum
4. Create flowgraph to playback an existing recording from a file.
5. Demonstration — 2.3401 GHz SSB SDR radio.

NOTES:

GNU Radio Microwave U}idate 2019

Gnuradio on Windows 10 64-bit OS.

» Must be x86_64 type processor (not ARM).

* Prebuilt Windows Installer (MSI file) image.
* You don't need to compile or build anything, just install.

* From MUD-workshop supplied USB stick.

« | atest version available at:
http://iwww.gcndevelopment.com/gnuradio/downloads.htm

« Limitation: Pre-built image only supports radios that the
maintainer chose to include.
= Several widely popular radios are included.
* You cannot (easily) add new modules or radios.

NOTES:

4 GNU Radio Microwave Update 2019

Gnuradio Core Concepts - 1

* Open Source software - Handles real-time DSP, Simulation, I/O, and buffer
management.

» Based on Python and C++
» Python for the interconnection, graphics, management.
» C++ for high-speed DSP functions, buffers, and /0.
* The installer takes care of setting up everything for you.
» A flowgraph is a Python program:
» Atext file containing the Python source code.
* Defines the DSP blocks, GUI blocks, Radio, Sources and Sinks.
» Parameter values, how everything is wired up.
* What your flowgraph looks like on the GUI display.

* You don't need to know Python or C++

* Gnuradio Companion (GRC) is a graphical GUI.
+ Allows you to enter flowgraph modules, parameters, and wiring with a GU| tool.
= Compiles your flowgraph into Python program and saves the file to disk.
* Allows you to Start and Stop your flowgraph: Invokes Gnuradio for you.

» Create and run DSP without writing code.

NOTES:

GNU Radio Microwave Update 2019 >

Gnuradio Core Concepts - 2

Gnuradio handles real-time buffering.
There cannot be a loop in a flowgraph.

A ‘throttle’ is needed when there is no source of timing.
* Aradio, or a soundcard (output or input) are all sources of real timing.
* The throttle prevents the CPU from working at 100%.
* GRC will warn you if it thinks you need one.
* It can be in any data path. If needed, use only one throttle.
* Windows audio sink can be a little goofy. Sometimes needs a throttle.

NOTES:

6 GNU Radio Microwave Update 2019

Windows Install Steps

1. Insert USB stick in computer.

2. Copy all the files to a folder on your desktop.

3. Click ‘safely remove’ then remove the USB stick.

4. Double-click the MSI file ICON to start the installation process.

* The installed software creates an ICON to start Gnuradio Companion
each time you want to run.

= Sets up the entire environment then Launches.

« Also installs the Gnuradio Manual.

» No ICON, point your web browser to the index file and click to open with
browser.

+ C:\Program Files\GNURadio-3.7\share\doc\gnuradio-3.7.xx.yy\htm\index.htmil
* XX, yy are the version numbers.

NOTES:

GNU Radio Microwave U}idate 2019

The GRC Main Window

'“.

08 4 ¢ 05 0 #% «sln[00w

E Rt Block Search el
=_] P (+Compile first if out-of-date) “':':.*: Blocks

E rwgram Fluet b By | Tinkuastgres wisge fiw

RES

x + +|_|sm——
HHIUHY
i

Ingemt

Console

e R ——— To=
Bk gt (—rﬂ-

NOTES:

8 GNU Radio Microwave Uidate 2019

Building a Flowgraph with GRC

Exercise #1

=k

. Open GRC by clicking the GRC ICON.
2. Open supplied existing flowgraph: Exercise 1.grc

3. Click the compile (build) icon.
* Creates a flowgraph: top_block.py
* You can rename this to anything Windows understands.

4. Click the run icon.
« Flowgraph starts, displays flowgraph GUI.
« |f you forgot to build — no worries, GRC will rebuild automatically.

5. Close the flowgraph GUI to terminate the flowgraph.

NOTES:

GNU Radio Microwave Update 2019

File Name Convention

-

4 ™ ol i
Gnuradio Executable
Flowgraph Compile | Python
Specification: or Run Program:
filename.grc / top_block.py
o L SF g S A
+ Created by graphically editing a + Auto-generated each time you build or
flowgraph. File created when you click run the flowgraph.
‘Save' or 'Save As" * Executable Python code.
* Describes: = Default name: top_block.py
+ Blocks, where they are on the + Can be hand-edited. But rename the file
layout sheet, rotation, orientation. or it will get overwritten!
« Block parameter values. = MName can be changed in Options block.
+ How blocks are wired together. = (Can also be executed from Gnuradio
+ Not executable, must create the Python command line.

Python executable.

NOTES:

10 GNU Radio Microwave Update 2019

Exercise 1 Flowgraph

rptim
ek
et Cptimmn 070

Signal Sauiie
Samps Rats 10

— e . R - T =y

100 mams_rein. ==
Wbt 133 " .

Defaults:

* QT GUI — provides graphical display

* samp_rate — sets the sample rate to 32 ksps. Easily changed.
Notes:

* Blue — type: complex Orange — type: float (real)

* GUI Frequency Sink — spectrum analyzer style display

NOTES:

11

GNU Radio Microwave U}idate 2019

Gnuradio Core Concepts - 3

* A 'source’ is something that streams samples into your flowgraph.
» Could be a radio, an audio soundcard source, a file, a TCP (connection...

* A 'sink’ is something that removes samples from your flowgraph.
» Aradio, soundcard sink, a file, a TCP connection...

» General blocks receive samples, transform them, might do other
things, then outputs modified (or not) samples.
* Examples of general blocks:
* Low Pass Filter

* FM Demodulator
» Delay block

NOTES:

12 GNU Radio Microwave Update 2019

Gnuradio Core Concepts - 4

Signal formats are color-coded.
* Blue: Complex single-precision float 32 (I + Q).
* Orange: Single-precision float 32.
* A bunch of others. Help=>Types to display handy pop-up legend.

GUI will only wire together two pins if they are of the same type.

Select block then use arrow-up and arrow-down to scroll through the
types supported by the block.

There are type-converter blocks available.
* Complex = Float has one blue input and two orange outputs.
* Can you explain why?

NOTES:

GNU Radio Microwave Update 2019 13

Complex vs. Real

» A complex signal contains both an In-Phase (l) signal and a
Quadrature-Phase (Q) signal.
* Real = one floating point number
« Complex = a pair of floating point numbers.
* Gnuradio keeps the complex number parts together as a pair.

* A complex number describes a vector on the complex plane.
« CCW rotation once/sec = positive 1 Hertz.
« CW rotation once/sec = negative 1 Hertz.

* A real number has no rotation — the vector exists only on the
real axis.
« Cannot differentiate negative frequency from positive frequency.
* Therefore: it's both frequencies at the same time.

NOTES:

14 GNU Radio Microwave Update 2019

Complex notation
» Single frequency = A{cos (wt) +isin (wt) } = A eliwt
*Cos=1 iSin=Q A=Amplitude of the signal

* o = frequency * 2n
Imag, Q

—— - t—1{ Real, 1

NOTES:

GNU Radio Microwave Update 2019

Gnuradio Core Concepts - 5

« Each block must know about the sample rate of the samples coming
into it.
« Some blocks can change the sample rate.
* For example ‘decimation’. ‘Keep one-in-N'
* Make sure you low pass filter before decimation or you violate Nyquist !
» Gnuradio creates a default variable samp_rate.

* If you have interpolation or decimatianhyau may need multiple sample rate
variables because you have several different sample rates at the same time in
your flowgraph.

* Many gnuradio blocks combine some function with decimation.
» For example Low-Pass-Filter has adjustable decimation.

« Tip: Reduce the sample close to the source in your flowgraph to
reduce CPU workload.

NOTES:

16 GNU Radio Microwave Update 2019

Modify a Flowgraph with GRC

Exercise #2

Launch GRC
If not already open, then Open the example from exercise #1.

1

2

3. Change the file name (otherwise will overwrite the previous file).
1. Click File = Save As to save the grc file with a new name.

4

Madify the following blocks to your flowgraph to change format:
1. Signal source
2. Delete the Float to Complex converter

5. Run the flowgraph. What's different? Does it do what you expect?

6. Optional — Rename compiled Python filename:
1. Defaults to top_block.py
Double click on the Properties block, then modify the properties block.

2.
3. This changes the generated Python block name, but does not rename the
flowgraphgrc file.

NOTES:

17

GNU Radio Microwave U}idate 2019

Exercise 2 Flowgraph

Oiptiant
O np_ack:
Genarats Dptions: 0T 00

NOTES:

18 GNU Radio Microwave Uidate 2019

Modify the QT Frequency Sink

T T T | The data format type

« Parameters can be any valid Python
expression evaluating to float, int, string,
or boolean (as appropriate).

= Examples:

+ =140

+ float{x*2) (xtimes2)

« int(10™y} (10¥ power)

' | NMumber of channels

=
_ o | Moancol | ool |

NOTES:

GNU Radio Microwave Uidate 2019 19

Additional QT Frequency Sink options

Sox | Hoame | Lo |

NOTES:

——— Turns on the run-time
GUI Control Panel.
Very useful.

20 G

NU Radio Microwave Update 2019

Low Pass Filter

Faram - Cuteff Freqioutof freg):
Wk = canrot be evaluated:

Pox | Booncel | of conly |

NOTES:

Provides Common Filter Shapes.

Complex = Complex (Input to Output).
Decimation reduces output sample rate by value
Gain.

Sample Rate usually specified from flowgraph
variable, but can be manually set.

Cutoff Frequency: -6 dB point in Hertz, must be
entered.

Transition width: filter roll-off in Hertz, from -6 dB
to stopband.

LowPassFilter passband goes from —Cutoff to
+Cutoff.
+ Real taps
« This may be twice as wide as you are
expecting!

GNU Radio Microwave Update 2019 21

Modifying Blocks

Exercise #3

Modifying blocks (double-click a block to modify):
= Can set the type in the windows, or

= Shortcut: single-click (select) the block, use T and down | keys to scroll
through available formats.

Renaming
» File = Save saves the ‘source code’ of the flowgraph. Suffix: grc

» Compiling the file saves the compiled flowgraph. Suffix: .py

+ Default: top_block.py. Can rename the flowgraph by modifying the clicking on and
modifying properties block.

Wire the blocks together per the diagram.
= Click on source port then click on destination port to wire together.

= A block with a Red Title has some kind of error — flowgraph won't run.
= Click a wire to highlight it, then hit Delete key to remove it.

Click run (will auto build).
= Will ask where to save it, and what to call it (only the first time).
= Note any errors. Fix, then try again (click run).

NOTES:

22 GNU Radio Microwave U}idate 2019

Exercise #3

Chptiony
Dy e ek
Gamarte Optianc 7 50
Sample Hmbe: 10
Pavstourm: oo e
= |
5 v QF GUI F requency Sink
Ot ¥ e P S 2
_____ Camtiar Frampear p (M &
Varkabb LEE L T
Mk memip_rats
Wakhse: 120
Low Pacx Filler
i = gt i
Moiie Soune G |
Bhuise Types Dnosnan Semghfstes 12 |y
A 1 Cuball Fregp =
Sewd: © Tramakas VSR
P

* Rename the flowgraph.
« Add lowpass filter, Gaussian noise source.
* Run the flowgraph. What can you say about the low pass filter behavior?

NOTES:

GNU Radio Microwave Uidate 2019 23

Things to note about Exercise #3

Note the spectral response !
« What can we say about the spectrum of a complex sinusoid?
« What can we say about the Low Pass filter response?

What does negative frequency mean?

NOTES:

24 GNU Radio Microwave Update 2019

Some Key Gnuradio Modules - 1

* Filters. General types: Lowpass, Bandpass, Highpass.
* Pre-made filter types available.
« Can make custom filters if necessary.

« Transfer function defined by the taps.

» Pre-defined filters use pre-created taps. Fast & easy way to implement
standard filters.

* GRC includes a filter designer GUI. Use it to create taps.
» Tools = Filter Design Tool

« Large # taps substantially increases computational resources.
* Real taps = both positive and negative frequency response.
« Complex taps = single-sided frequency response.

NOTES:

GNU Radio Microwave Update 2019 25

NOTES:

Some Key Gnuradio Modules - 2

« Add
* Adds two signals sample-by-sample.
« Multiply
» Multiply two signals sample-by-sample.
+ Implements mixer (frequency shifter) or Gain / Attenuate.

« Convertors
* Float = Complex
* Complex - Float
+ Stream = Vector

« GUI : scope, spectrum analyzer, constellation, waterfall.
« Many more. Explore on your own.

26

GNU Radio Microwave Update 2019

Filter Designer

Tools = Filter Design

Bl kb i

= 7 amdmees | e | e Gagosy | e cosn | epee it + Use to create
— . L - custom filters.
:n.:| — o -3 ;H » Creates filter
— "“'_ e taps’ file that can
o e be read by filter
Endl o Pam Band e oo - M
== 3 L block.
S Bt At 0 [e o LR - iep [l et = Standard filter
blocks don't
P e need any of this.
Bravimets
Ce= 1
NOTES:
GNU Radio Microwave Update 2019 27

Sample Rate & Decimation

» You must keep track of the sample rate throughout your
flowgraph. Otherwise bad things happen.
« Decimation & interpolation change the sample rate.

» Flowgraph creates a variable: samp_rate

* You can use that name, or change it. You can make additional variables
(for any purpose).

 Blocks that depend on the sample rate normally should use a
variable.
« Benefit: If you change the sample rate, then all blocks using that

variable change along with it. Otherwise you have to hunt down and
change all the rate-dependent blocks.

NOTES:

28 GNU Radio Microwave Update 2019

Decimation

« Normally the radio produces samples at too fast a rate — overwhelms
CPU capability.

» Once you have isolated the frequencies of interest, frequency shift to
zero Hertz, then decimate.

« Decimation reduces the sample rate by a factor of N.

« Nyquist criteria: You must low-pass-filter to £Fs/2N or less before
decimating.
* Blocks downstream of the decimation thus process much fewer samples.

« Match sample rate between devices.

« Example: Radio (perhaps 192 ksps) to Soundcard (perhaps 48 ksps).
* LPF to less than 24 kHz (passband + roll off < 24k) Nyquist.
*» Then decimate by 192 /48 (i.e. decimate by 4).

NOTES:

GNU Radio Microwave Update 2019 29

Multiplier

» A Complex multiply produces a frequency shift.

» Complex multiply does not produce sum and difference
frequencies — only produces the sum frequency.

* Real multiply does produce sum and difference frequencies.

« Negative-frequency carrier used to down-convert. Two ways:
* Enter frequency as a negative number.

or

. Ta_ke complex conjugate of positive frequency (negates the imaginary
part).

NOTES:

30 GNU Radio Microwave Update 2019

Down-convert + Filter + Listen

Exercise #4

» Stream samples from a file (pre-recorded).
* “15mins_NAQP_SSB_96k_14240Khz_center” (No .extension)

» Visualize the spectra.

» Down-convert and Tune a selected channel.
 Tune the filter passband.

* Filter and decimate.

« Listen on your soundcard.

NOTES:

GNU Radio Microwave Update 2019 31

Exercise #4 Play pre-

recorded file (SSB)

GUI control to GUI cantrol - Tune + 96 keps (radio) / 48 ksps (soundcard) =
Tune the shift GUI control - the Passband shift decimation by 2.
oscillator. Volume. oscillator. » Mote the sample rate matches what was
Optiom QT GLA R QT GUI Ra | P | recorded
L x Tna pin W Yakama 0 :::_:_ l:"'l-l;tllln"'ﬂ |
| Gmmermtn Optionss &7 S bk Turm Dafanlt Walus: § -, I.-HmF e
e CorFand Walus: I Stark: L & ——
: " Start: -&ik Whage 70
Osclllator to shift the signal. ek [ity Observe the entire 96k shifted
s_ulsn-:: | Stepe 132 | passband
Gamphe Sate: |
.-—*--M'I_______________________ | QT GUI Frequency Sink
Frequency: o L P R T Multiply Const gg =~~~ FET Sizea 1 074k
Wit L '-Hl"l'.- Carter Fraquancy (Hel: 13 146
| e o | st i Ramd micith {Hial: 355
{ Tune the recelved
Fille Source gignal frequen
- . el Recruency e g T
S i Listan on soundcard,
Play a recorded file, = [E— Keap Real part, throw Set sample rate to
Repeat (untll manually stopped). oty I l away Imaginary part. 48 ksps
Gains 5
!-—lll:l-n:ﬂ B “_J— Multiply
Cabaff Freg: 1 34 1 I
Tranuition Width: 510 [—
Vi m Hamorung T |
Batar d T

Passband +1.5 KHz (3 KHz wide). Tunable
+/- 6 KHz. Decimate by 2, Gain = 1000

NOTES:

Shift passband -6 KHz to + 6 KHz

32

GNU Radio Microwave Update 2019

Radios

« Aradio acts as source (receiver) and sink (transmitter).

* Receiver source can replace the file source in the previous exercise or
signal source in earlier exercises.

« Different radios have different source and sink blocks.

« A ‘radio’ tuning behavior will be slightly different than the previous
‘file’ tuning behavior.
* Can you explain what that difference is?

» Some radios have separate source and sink blocks — even though
they are connected to the same radio.

« Some radios combine source and sink all into one block.

NOTES:

GNU Radio Microwave Update 2019 33

Microwave SDR Transceiver Demo

« Use Flexibility of GNR + SDR
» Do L.F., filtering, modulation & demodulation in the SDR
» Adjust LO and SDR operation to match what you have available

» Pick operation points for performance
» Select LO to fit band plan — QRM input and output
» Make filter easier to build/find

» Performance of components vs. frequency can drive design

« Gnuradio + SDR can reduce components in design and make
changes easier.

« Some SDR can cover up to 6 GHz without additional conversions.
* Multi-band radio can be simpler, smaller, and less expensive.

* 10+ GHz usually requires analog up & down conversion.

NOTES:

34 GNU Radio Microwave Update 2019

Microwave Demo Block Diagram: 2304.1 MHz SSB

SDR Radio
70 MHz - 6 GHz.

!

PC + Gnuradio

MIC, Speaker, etc.

NOTES:

* Some SDR operate up to 6 GHz.
+ Converter(s) not needed for operation up to 6 GHz.
+ External RF filtering is needed for many SDR.
* Many SDR radios support full duplex.
* Ettus supports full duplex.
* Ettus half-duplex intended for burst mode, doesn't
work well for continuous modes.
* External Frequency reference input.
« Gnuradio flowgraph determines the modulation and mode
of operation:
« 55B, CW, and related, AM, FM, Beacon, Data, others

i
1
I
|
1
1

Conventional Radio

(

e.g. Multimode)

GNU Radio Microwave Update 2019

35

GNU Radio Microwave Update 2019

36

Post-Seminar Breakout

» There will be several different radios being demonstrated in this
room for the next ~ hour.
* Find a demo or radio you are interested in and talk with the
instructors.
* List of radio demos:
« Pluto
« RTL-SDR
« Ettus — WiFi Spectrum Analyzer
« Other?

NOTES:

GNU Radio Microwave Update 2019 37

Example, Ideas, and Hints

» Extending frequency range beyond SDR capability.

* Measuring Cable / Other device attenuation at Microwave
frequencies using SDR.

* Beacon

NOTES:

38 GNU Radio Microwave Update 2019

Extending Frequency Range

12€ CTRL {Optional)

10 MHz
5to 10.2 GHz

Microwave SOR
10.304 GHz Transverter
Tower Shack
Antenna

NOTES:

GNU Radio Microwave Uidate 2019 39

Extending Frequency Range j2¢ CTRL (Optional)
— Two Mixers

GPS Slave 10 MHz
Clock

5to 10.2 GHz

Microwave SDR
10.304 GHz Transverter 1m{o; M
P
Tower Shack ﬂl.:l Radio
Antenna

NOTES:

40 G

NU Radio Microwave Uidate 2019

Extending Frequency Range /2€ CTRL (Optianal)
— One Mixer I

GPS Slave 10 MHz

Clock
Lo |
- | IF A/DD/A
I Converter
T, L | Relay | SDR
i | HF - 6 GHz
| ™ i
' SDR I
10.304 GHz e =
Transverter
Tower Shack i "' : .
Antenna

NOTES:

GNU Radio Microwave Uidate 2019 41

Extending Frequency Range

— Half Duplex
5to 10.2 GHz D.::" 10 MHz

I — Power AMP Ly |

:@ | A/DD/A
~ | meemx < Converter
! | SDR

12C CTAL (Opticnal)

500 —

|

A
H/‘ :
T o *@3}—’ — 0t 1 e-eem
B JW 1000) ™

E PreAMP |
SDR
00 M Microwave 100{0] ME
e Transverter ik HP -
GNU Radio

NOTES:

42 GNU Radio Microwave Uidate 2019

Extending Frequency Range

12¢ CTRL {Optional)

— Half Duplex, One Mixer
10 MHz
‘ ¢
IF A/DD/A
Converter
| SDR
HF - 6 GHz
CTRL | 100(0) MB|
SDR I
[crowave J——
ke o 'hrquanwerter skl W“:ﬂa[m —

NOTES:

GNU Radio Microwave Uidate 2019 43

Measuring Loss vs.
Frequency

{ Good 50 chm match |

SDR Afttenuato
(™) r
Step 1: measure

Back-to-back
response

—

e Attenuato | |

r

-

{ Good 50 ohm maltch,
pravenl receiver overload /
damage)

NOTES:

Step 2: measure
DUT response

Test Device:

Hitl

Step 3: compute
difference

44 GNU Radio Microwave Update 2019

Automated Low Cost Beacon:
Multiband, Multimode

BB
Antenna

Filter
Bank

SDR Radio

Relay Select Filter per band

Single Board
Computer

v g

SBC ocperating system
+ Gnuradio
+ Fila containing audic for beacon (Voice, CW, FT8, atc.)

NOTES:

GNU Radio Microwave Uidate 2019 45

Help

« Gnuradio installs help on your PC:
= C:\Program Files\GNURadio-3.7\share\doc\gnuradio-3.7.xx.yy\html\index.html
* XX.yy corresponds to your version number (should be the only such folder).
* Open with web browser. Maybe make a URL shortcut on your desktop?
» Auto-generated: Help content thoroughness varies by module.

« Gnuradio Examples:
* C:\Program Files\GNURadio-3.7\share\gnuradio\examples
* Main Page On Line:
* hitps://wiki.gnuradio.org/index.php/Main_Page
» Gnuradio tutorials (excellent):
» hitps://wiki.gnuradio.org/index.php/Tutorials
« Gnuradio mailing list (very busy):
» hitps://wiki.gnuradio.org/index.php/MailingLists

« Ettus mailing list (Ettus radio only, busy):
« hitp://lists.ettus.com/pipermail/usrp-users lists.ettus.com/

NOTES:

46 GNU Radio Microwave Update 2019

Additional Information supporting GNU Radio

ADLM-Pluto Crystal Change

In the case of the ADLM-Pluto one possible improvement in performance would be to replace the
crystal (Y3) used in manufacturing. | found some discussion about this doing a web search and the
crystal shown below was suggested as a replacement. | collected the specifications on the two crys-
tals and have them in Table 1.

Mfg ABRACON Rakon

Part # ASTX-13-C-40.000MHz-105-T RX03225M

Duty cycle 45 to 55 %

Output load 10 pf 15 pf

Rise time/fall

time 5 max nS

RMS phase

Jitter 11.7 pS Calculated 0.3 pS

Freq Stability 0.5 ppm 25 max ppm | <Key

Operating Temp -30to75 C -55r0 85 C

Phase Noise @ 1 kHz -130 dBc/Hz

vdd 1.8 V 3.3 max Vv

Id 2 mA 10 max mA
Table 1

The Frequency stability is the parameter that indicates the Abracon crystal is a better choice. 1
purchased some of these from the distributor Mouser Electronics. Using a hot air soldering sta-
tion I removed the crystal on the ADLM-Pluto and replaced it with the Abrasion 40 MHz crystal.
The original crystal seems to have been soldered on with a high temperature lead-free solder
so it took a fair amount of heat to remove it. The pads on +1.8V and GND are probably also con-
nected to copper planes which sink heat away. The replacement part is smaller so it gives you
room to work with the pads and solder it in place.

GNU Radio Microwave Update 2019 47

If you do this pay attention to the part number because the C in the part number indicates the
operating voltage of 1.8 V, which is what the ADLM-Pluto, is designed to use.

The location of the crystal (Y3) is shown in the photo of Figure 1.

c170

i

=
o

=
-
U]
e
@
.
-
o]

12

Replacement

Original

Figure 1.

Another option would be to remove the crystal and feed in an external LO reference. The fol-

low wiki link discusses how to change the LO of your device if you have the ad9361 chip on the
board.

https://wiki.analog.com/resources/tools-software/linux-drivers/iio-transceiver/ad9361 #fast-
lock_mode

GNU Radio is using the Libiio drivers to write values into the registers of the communication

chip when the OOT module is present. So [assume you could look at all the registers and make
changes to others values you want to modify.

Keep in mind the follow on PLL also plays a role in frequency stability. From some discussion I

48 GNU Radio Microwave Update 2019

heard at a recent workshop Analog Devices designers made an effort to mitigate the PLL issues.
This work would be best performed using a Linux interface for the Libiio support until the

Windows platform is available to the ADLM-Pluto. There is a windows platform supporting the
Libiio today but the interface is not through GNU Radio. This will likely change soon.

Speed Test
When running GNU radio and trying to use it as radio to communicate you may be pressed to
find your best option on a computer to use. This information is intended to help you under-
stand the difference in performance of a few available platforms.
[installed a package called sysbench on several computers. This package is an attempt at bench
testing computers to see how fast they can complete a task. The version I used, sysbench -ver-
sion:
sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)
The command line entry for the program I used was:
sysbench --test=cpu --num-threads=4 --cpu-max-prime=9999 run
In this case sysbench would execute with the following flags set:
--test=cpu Test the CPU in the computer
--num=threads=4 Run four different calculations at one time.
--cpu-max-prime=9999 Calculate the number of prim numbers found in 9999

run Execute the request and time the results

There are many other options available and some things are set at default. This command with
the options seltected gives us some useful information.

The test results in Table 1 show us the time it takes each computer to complete the calculations.

GNU Radio Microwave Update 2019 49

Raspberry Pi Model B+ V1.2 388 Seconds

Raspberry Pi Rpi Zero W 42 Seconds

Raspberry Pi Pi 4 29 Seconds

NVDIA Jetson 2 10 Seconds

Intel 17 10 Seconds
Table 1

I was surprised to see the Jetson 2 and the Intel I7 performed with the
same results.

To identify the two fastest computers better I ran the command
With the following results:

sudo lshw -short
Intel:

system System Product Name (SKU)
bus PRIME Z370-A

memory 64KiB BIOS

memory 16GiB System Memory

memory [empty]
memory 8GiB DIMM DDR4 Synchronous Unbuffered (Unregistered) 2400 MHz (0.4 ns)
memory [empty]

memory 8GiB DIMM DDR4 Synchronous Unbuffered (Unregistered) 2400 MHz (0.4 ns)
memory 384KiB L1 cache

memory 1536KiB L2 cache

memory 12MiB L3 cache

processor Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz

bridge 8th Gen Core Processor Host Bridge/DRAM Registers

bridge Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor PCle Controller (x16)
bridge Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor PCle Controller (x8)
storage 88SE9230 PCle SATA 6Gb/s Controller

display Intel Corporation

bus 200 Series/Z370 Chipset Family USB 3.0 xHCI Controller

bus xHCI Host Controller

50 GNU Radio Microwave Update 2019

sudo Ishw
NVIDIA:

jetson-2
description: Computer
product: jetson-nano
serial: 04211190063720c00501
width: 64 bits
capabilities: smp cpl5_barrier setend swp
*—core
description: Motherboard
physical id: @
*—Cpu:0
description: CPU
product: cpu
physical id: @
bus info: cpu@@
size: 921MHz
capacity: 1428MHz
capabilities: fp asimd evtstrm aes pmull shal sha2 crc32 cpu-
freq
*x—cpu:l
description: CPU
product: cpu
physical id: 1
bus info: cpu@l
size: 921MHz
capacity: 1428MHz
capabilities: fp asimd evtstrm aes pmull shal sha2 crc32 cpu-
freq
*—cpu:2 DISABLED
description: CPU
product: cpu
physical id: 3
bus info: cpu@2
size: 921MHz
capacity: 1428MHz
capabilities: cpufreq
*—cpu:3 DISABLED
description: CPU
product: cpu
physical id: 4
bus info: cpu@3
size: 921MHz
capacity: 1428MHz

GNU Radio Microwave Update 2019 51

capabilities: cpufreq
*—cpu:4 DISABLED
description: CPU
product: idle-states
physical id: 5
bus info: cpu@4
*—cpu:5 DISABLED
description: CPU
product: 12-cache
physical id: 6
bus info: cpu@5
*—memory
description: System memory
physical id: 7
size: 3956MiB
*—pcCi
description: PCI bridge
product: NVIDIA Corporation
vendor: NVIDIA Corporation
physical id: 2
bus info: pci@0000:00:02.0
version: al
width: 32 bits
clock: 33MHz
capabilities: pci pm msi ht pciexpress normal_decode bus_master
cap_list
configuration: driver=pcieport
resources: irq:84 ioport:1000(size=4096) memo-
ry:13000000-130fffff

I plan to use the Jetson for my GNU Radio support, as it is small and
fast. I purchased a fan to try and keep the CPU cooler. If the processor
starts to warm up the clock rate will slow down without any indication
to you and performance will degrade. This is a problem if you are a rov-
er operating on a hot day. Some type of special cooling is needed or you
need to operate inside an air-conditioned vehicle.

52 GNU Radio Microwave Update 2019

A Few Comments on FPGA operation vs. CPU code....

When working with an SDR radio many of them are Field Programmable Gate Array, FPGA
based or have the option of using an FPGA. The FPGA is an IC, which is a larger collection of
transistors that can be interconnected with a special connection map. The interconnect map is
stored in a memory chip and loaded into the FPGA at power up typically but can be loaded or
changed while the FPGA is in use.

This map to do the FPGA interconnect is called combinational logic map. An example of the
some equivalent TTL logic of a 4 bit multiplier is shown in Figure 1. This multiplier would
have the results of A X B in a few Nano seconds after either value changes states. Very fast and
little effort after the FPGA is mapped and operational. The most difficult part of FPGA develop-
ment can be establishing proper clocking across the chip. You must have all the logic switching
properly or you may have logic levels in the wrong state when they are considered. There are
tools to help with this but developers can spend days making sure they have good timing and
still may have subtle issues that bite you later. This depends on the skill of the developer, the
chips used, and the complexity of the design.

Ao »

Ay -

A -

A »

By L 7
By -
By »
E,

—[_ 11‘1?5:- '1:-‘12313 — 1‘1?5:- '1:-‘12313_
- G ALLX EEEE G - G ALLA EEEE G|
2 A 3210 3210 B 2 A 3210 3210 B

5] &)

4 YYyy 5 YVYYyy
76 5 % 3210
smn[u]3-1-:-*1112

1-'| T:";Y T:".Y YQJ Yo

Figure 1

To do the same multiplication job in a processor you would write a hi level program in C, C++,
or python which says Result = A * B. This would be assembled and compiled into a list of bi-
nary instructions for the CPU chip and would require many clock cycles to execute. The CPU
can be an ARM processor like a Raspberry Pi or a high-end computer motherboard with a

GNU Radio Microwave Update 2019 53

water-cooled CPU. The time to complete the multiplication will depend on the clock frequency
and the instruction set available.

If the needed DSP processing is not too complex the CPU approach will work. I remember Phil
Karn, KA9Q pushing the idea of using an IBM desktop computer over a DSP based system 30
years ago.

The problem is implementation in both cases. In the case of the FPGA you need to know how to
develop the mapping program using a language called Verilog typically and have the tools to do
this. The tools are readily available almost free in many cases. A detailed understanding of the
architecture of the FPGA selected and the tool set needed. Not a lot of people much less ama-
teur radio people are available to do this.

In the case of the CPU there are more people with the know how to program and the tools are
available for free. We are seeing more effort in this area but the progress is slow.

GNU Radio offers the amateur that is not a strong programmer an opportunity to build the
needed firmware for radio projects using easy to understand flow charts. Learning the details
of signal process is still a challenge but many already have some experience using analog pro-
cesses.

GNU Radio use of Out Of Tree (OOT) modules allows a manufacture or a end user to create a
OOT block that may call on routines buried in an FPGA. In some cases this is documented well
enough that an armature can take advantage of writing there own OOT block to use an FPGA or
other hardware available in a SDR platform. An example of this may be to obtain a single IO to
do Radio Transmit/Receive switching.

You can usually find good documentation at the PCB level but when the signals go down into
an IC this may be more difficult. The needed details do sometimes leak out of the manufacture
over time. An example of this is the information needed to allow you to change the reference

clocking frequency on the ADALM-Pluto by Analog Devices.

Some FPGA models are available in the public domain like the code used in the TAPR HPSDR
and the Hermes Light for HF SDRs.

Hopefully this explains the difference in FPGA vs. CPU approaches to DSP.

54 GNU Radio Microwave Update 2019

4.

6.

7.

8.

9.

10.

Additional References

https://www.ettus.com/sdr-software/gnu-radio/ The GNU Radio web page

with software, hardware and news about events.
https://greatscottgadgets.com/sdr/, Lessons on DSP and the Hack RF
presented by Michael Ossmann of Great Scott Gadgets. A very nice easy to
understand presentation especially lessons 6 and 7.
https://labsdl.wordpress.com/2018/08/30/gnu-radio-tips-how-to-con-
vert-wav-ig-file-into-raw/ This is an utility use of a Flow Graph to convert a
WAV file to a RAW file.

https://www.eevblog.com/forum/rf-microwave /adalm-pluto-as-vh-
fuhf-spectrum-analyzer-and-a-tracking-generator/ A discussion on using a
SDR (Pluto) as a tracking signal generator including flow charts.
http://aaronscher.com/GNU_Radio_Companion_Collection/GNU_Radio
Companion.html A collection of GNU Radio Flow Charts with documenta-
tion presented by Dr. Aaron Scher of Oregon Institute of Technology
https://svlcal.com/usrp_map65/ Michael Margaras SV1CAL documents his
use of the Ettus USRP for EME operations and other radio work.
https://stackoverflow.com/questions/33435642 /programming-an-oot-

module-with-variable-i-o-type Tip on writing OOT blocks.

https://github.com/gnuradio/gr-tutorial A tutorial on OOT module for
GNU Radio

https://wiki.analog.com/resources/tools-software/linux-software/gnura-
dio Analog Devices Wiki on GU Radio

o0z9aec.net/radios/gnu-radio/grc-examples Alexandru Csete
OZ9AEC Example page

GNU Radio Microwave Update 2019 55

56

GNU Radio Microwave Update 2019

GNU Radio Microwave Update 2019

57

