
GNU Radio

Workshop

Presented at Microwave Update

October 3 2019

Lewisville, Texas

Publish by:

ARRL Logo

Microwave Update 2019
Sponsored by:
North Texas Microwave Society

Copyright © 2019 by
The American Radio Relay League

Copyright secured under the Pan-American Convention.

International Copyright secured.

All rights reserved. No part of this work may be reproduced in any form except by
written permision of the publisher. All rights or translation reserved.

Printed in USA.

Quedan reservados todos los derechos.

ISBN: xxxxxxxxxxxx

First Edition

Cover photo credit if any.

 Table of Contents

 Introduction

 Slides presented at workshop

 Additional Information supporting GNU Radio

 References

 Introduction

With the growing use of software defined radio (SDR) in commu-
nications and Amateur Radio this workshop is an effort to teach the
application and approach which may be followed by people inter-
ested in developing their own working radio systems using GNU
Radio. GNU Radio (GNR) is a tool developed for simulation and
implementation of SDR concepts. GNR is dynamic as it is growing
in its capability and expanding the number of physical hardware
supported. This growth will likely continue especially as the sup-
ported hardware evolves.

GNR allows you to quickly get productive results and make changes
in the operation or performance of your equipment. Its a powerful
learning tool.

While the idea of learning about Digital Signal Processing (DSP)
and the methods needed to implement a complete radio may seem
overwhelming to many. GNR is just the tool to help you evolve into
this space without too much pain.

We hope your participation in the workshop and for those of you
that obtain the material later find this enjoyable and contribute to
the continued development in your own way. You will be able to de-
velop working systems and we hope you use them and share them
with everyone.

NOTES:

1GNU Radio Microwave Update 2019

NOTES:

2 GNU Radio Microwave Update 2019

3GNU Radio Microwave Update 2019

NOTES:

NOTES:

4 GNU Radio Microwave Update 2019

5GNU Radio Microwave Update 2019

NOTES:

NOTES:

6 GNU Radio Microwave Update 2019

7GNU Radio Microwave Update 2019

NOTES:

NOTES:

8 GNU Radio Microwave Update 2019

9GNU Radio Microwave Update 2019

NOTES:

NOTES:

10 GNU Radio Microwave Update 2019

11GNU Radio Microwave Update 2019

NOTES:

NOTES:

12 GNU Radio Microwave Update 2019

13GNU Radio Microwave Update 2019

NOTES:

NOTES:

14 GNU Radio Microwave Update 2019

15GNU Radio Microwave Update 2019

NOTES:

NOTES:

16 GNU Radio Microwave Update 2019

17GNU Radio Microwave Update 2019

NOTES:

NOTES:

18 GNU Radio Microwave Update 2019

19GNU Radio Microwave Update 2019

NOTES:

NOTES:

20 GNU Radio Microwave Update 2019

21GNU Radio Microwave Update 2019

NOTES:

22 GNU Radio Microwave Update 2019

NOTES:

23GNU Radio Microwave Update 2019

NOTES:

NOTES:

24 GNU Radio Microwave Update 2019

25GNU Radio Microwave Update 2019

NOTES:

NOTES:

26 GNU Radio Microwave Update 2019

27GNU Radio Microwave Update 2019

NOTES:

NOTES:

28 GNU Radio Microwave Update 2019

29GNU Radio Microwave Update 2019

NOTES:

NOTES:

30 GNU Radio Microwave Update 2019

31GNU Radio Microwave Update 2019

NOTES:

32 GNU Radio Microwave Update 2019

NOTES:

33GNU Radio Microwave Update 2019

NOTES:

NOTES:

34 GNU Radio Microwave Update 2019

35GNU Radio Microwave Update 2019

NOTES:

36 GNU Radio Microwave Update 2019

37GNU Radio Microwave Update 2019

NOTES:

NOTES:

38 GNU Radio Microwave Update 2019

39GNU Radio Microwave Update 2019

NOTES:

NOTES:

40 GNU Radio Microwave Update 2019

41GNU Radio Microwave Update 2019

NOTES:

NOTES:

42 GNU Radio Microwave Update 2019

43GNU Radio Microwave Update 2019

NOTES:

NOTES:

44 GNU Radio Microwave Update 2019

45GNU Radio Microwave Update 2019

NOTES:

NOTES:

46 GNU Radio Microwave Update 2019

47GNU Radio Microwave Update 2019

 Additional Information supporting GNU Radio

ADLM-Pluto Crystal Change

In the case of the ADLM-Pluto one possible improvement in performance would be to replace the
crystal (Y3) used in manufacturing. I found some discussion about this doing a web search and the
crystal shown below was suggested as a replacement. I collected the specifications on the two crys-
tals and have them in Table 1.

Mfg ABRACON Rakon
Part # ASTX-13-C-40.000MHz-I05-T RX03225M
Duty cycle 45 to 55 %
Output load 10 pf 15 pf
Rise time/fall
time 5 max nS
RMS phase
Jitter 11.7 pS Calculated 0.3 pS
Freq Stability 0.5 ppm 25 max ppm <Key
Operating Temp -30 to 75 C -55 ro 85 C
Phase Noise @ 1 kHz -130 dBc/Hz
Vdd 1.8 V 3.3 max V
Id 2 mA 10 max mA

Table 1

The Frequency stability is the parameter that indicates the Abracon crystal is a better choice. I
purchased some of these from the distributor Mouser Electronics. Using a hot air soldering sta-
tion I removed the crystal on the ADLM-Pluto and replaced it with the Abrasion 40 MHz crystal.
The original crystal seems to have been soldered on with a high temperature lead-free solder
so it took a fair amount of heat to remove it. The pads on +1.8V and GND are probably also con-
nected to copper planes which sink heat away. The replacement part is smaller so it gives you
room to work with the pads and solder it in place.

48 GNU Radio Microwave Update 2019

Another option would be to remove the crystal and feed in an external LO reference. The fol-
low wiki link discusses how to change the LO of your device if you have the ad9361 chip on the
board.

https://wiki.analog.com/resources/tools-software/linux-drivers/iio-transceiver/ad9361#fast-
lock_mode

GNU Radio is using the Libiio drivers to write values into the registers of the communication
chip when the OOT module is present. So I assume you could look at all the registers and make
changes to others values you want to modify.

Keep in mind the follow on PLL also plays a role in frequency stability. From some discussion I

 If you do this pay attention to the part number because the C in the part number indicates the
operating voltage of 1.8 V, which is what the ADLM-Pluto, is designed to use.

The location of the crystal (Y3) is shown in the photo of Figure 1.

 Figure 1.

49GNU Radio Microwave Update 2019

Speed Test

When running GNU radio and trying to use it as radio to communicate you may be pressed to
find your best option on a computer to use. This information is intended to help you under-
stand the difference in performance of a few available platforms.

I installed a package called sysbench on several computers. This package is an attempt at bench
testing computers to see how fast they can complete a task. The version I used, sysbench -ver-
sion:

sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)

The command line entry for the program I used was:

sysbench --test=cpu --num-threads=4 --cpu-max-prime=9999 run

In this case sysbench would execute with the following flags set:

--test=cpu Test the CPU in the computer

--num=threads=4 Run four different calculations at one time.

--cpu-max-prime=9999 Calculate the number of prim numbers found in 9999

run Execute the request and time the results

There are many other options available and some things are set at default. This command with
the options seltected gives us some useful information.

The test results in Table 1 show us the time it takes each computer to complete the calculations.

heard at a recent workshop Analog Devices designers made an effort to mitigate the PLL issues.

This work would be best performed using a Linux interface for the Libiio support until the
Windows platform is available to the ADLM-Pluto. There is a windows platform supporting the
Libiio today but the interface is not through GNU Radio. This will likely change soon.

50 GNU Radio Microwave Update 2019

I was surprised to see the Jetson 2 and the Intel I7 performed with the
same results.

To identify the two fastest computers better I ran the command
With the following results:

sudo lshw -short
Intel:

Class Description
===
system System Product Name (SKU)
bus PRIME Z370-A
memory 64KiB BIOS
memory 16GiB System Memory
memory [empty]
memory 8GiB DIMM DDR4 Synchronous Unbuffered (Unregistered) 2400 MHz (0.4 ns)
memory [empty]
memory 8GiB DIMM DDR4 Synchronous Unbuffered (Unregistered) 2400 MHz (0.4 ns)
memory 384KiB L1 cache
memory 1536KiB L2 cache
memory 12MiB L3 cache
processor Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
bridge 8th Gen Core Processor Host Bridge/DRAM Registers
bridge Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor PCIe Controller (x16)
bridge Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor PCIe Controller (x8)
storage 88SE9230 PCIe SATA 6Gb/s Controller
display Intel Corporation
bus 200 Series/Z370 Chipset Family USB 3.0 xHCI Controller
bus xHCI Host Controller

Raspberry Pi Model B+ V1.2 388 Seconds

Raspberry Pi Rpi Zero W 42 Seconds

Raspberry Pi Pi 4 29 Seconds

NVDIA Jetson 2 10 Seconds

Intel I7 10 Seconds

 Table 1

51GNU Radio Microwave Update 2019

sudo lshw
NVIDIA:

jetson-2
 description: Computer
 product: jetson-nano
 serial: 04211190063720c00501
 width: 64 bits
 capabilities: smp cp15_barrier setend swp
 *-core
 description: Motherboard
 physical id: 0
 *-cpu:0
 description: CPU
 product: cpu
 physical id: 0
 bus info: cpu@0
 size: 921MHz
 capacity: 1428MHz
 capabilities: fp asimd evtstrm aes pmull sha1 sha2 crc32 cpu-
freq
 *-cpu:1
 description: CPU
 product: cpu
 physical id: 1
 bus info: cpu@1
 size: 921MHz
 capacity: 1428MHz
 capabilities: fp asimd evtstrm aes pmull sha1 sha2 crc32 cpu-
freq
 *-cpu:2 DISABLED
 description: CPU
 product: cpu
 physical id: 3
 bus info: cpu@2
 size: 921MHz
 capacity: 1428MHz
 capabilities: cpufreq
 *-cpu:3 DISABLED
 description: CPU
 product: cpu
 physical id: 4
 bus info: cpu@3
 size: 921MHz
 capacity: 1428MHz

52 GNU Radio Microwave Update 2019

 capabilities: cpufreq
 *-cpu:4 DISABLED
 description: CPU
 product: idle-states
 physical id: 5
 bus info: cpu@4
 *-cpu:5 DISABLED
 description: CPU
 product: l2-cache
 physical id: 6
 bus info: cpu@5
 *-memory
 description: System memory
 physical id: 7
 size: 3956MiB
 *-pci
 description: PCI bridge
 product: NVIDIA Corporation
 vendor: NVIDIA Corporation
 physical id: 2
 bus info: pci@0000:00:02.0
 version: a1
 width: 32 bits
 clock: 33MHz
 capabilities: pci pm msi ht pciexpress normal_decode bus_master
cap_list
 configuration: driver=pcieport
 resources: irq:84 ioport:1000(size=4096) memo-
ry:13000000-130fffff

I plan to use the Jetson for my GNU Radio support, as it is small and
fast. I purchased a fan to try and keep the CPU cooler. If the processor
starts to warm up the clock rate will slow down without any indication
to you and performance will degrade. This is a problem if you are a rov-
er operating on a hot day. Some type of special cooling is needed or you
need to operate inside an air-conditioned vehicle.

53GNU Radio Microwave Update 2019

A Few Comments on FPGA operation vs. CPU code….

When working with an SDR radio many of them are Field Programmable Gate Array, FPGA
based or have the option of using an FPGA. The FPGA is an IC, which is a larger collection of
transistors that can be interconnected with a special connection map. The interconnect map is
stored in a memory chip and loaded into the FPGA at power up typically but can be loaded or
changed while the FPGA is in use.

This map to do the FPGA interconnect is called combinational logic map. An example of the
some equivalent TTL logic of a 4 bit multiplier is shown in Figure 1. This multiplier would
have the results of A X B in a few Nano seconds after either value changes states. Very fast and
little effort after the FPGA is mapped and operational. The most difficult part of FPGA develop-
ment can be establishing proper clocking across the chip. You must have all the logic switching
properly or you may have logic levels in the wrong state when they are considered. There are
tools to help with this but developers can spend days making sure they have good timing and
still may have subtle issues that bite you later. This depends on the skill of the developer, the
chips used, and the complexity of the design.

Figure 1

To do the same multiplication job in a processor you would write a hi level program in C , C++,
or python which says Result = A * B. This would be assembled and compiled into a list of bi-
nary instructions for the CPU chip and would require many clock cycles to execute. The CPU
can be an ARM processor like a Raspberry Pi or a high-end computer motherboard with a

54 GNU Radio Microwave Update 2019

water-cooled CPU. The time to complete the multiplication will depend on the clock frequency
and the instruction set available.

If the needed DSP processing is not too complex the CPU approach will work. I remember Phil
Karn, KA9Q pushing the idea of using an IBM desktop computer over a DSP based system 30
years ago.

The problem is implementation in both cases. In the case of the FPGA you need to know how to
develop the mapping program using a language called Verilog typically and have the tools to do
this. The tools are readily available almost free in many cases. A detailed understanding of the
architecture of the FPGA selected and the tool set needed. Not a lot of people much less ama-
teur radio people are available to do this.

In the case of the CPU there are more people with the know how to program and the tools are
available for free. We are seeing more effort in this area but the progress is slow.

GNU Radio offers the amateur that is not a strong programmer an opportunity to build the
needed firmware for radio projects using easy to understand flow charts. Learning the details
of signal process is still a challenge but many already have some experience using analog pro-
cesses.

GNU Radio use of Out Of Tree (OOT) modules allows a manufacture or a end user to create a
OOT block that may call on routines buried in an FPGA. In some cases this is documented well
enough that an armature can take advantage of writing there own OOT block to use an FPGA or
other hardware available in a SDR platform. An example of this may be to obtain a single IO to
do Radio Transmit/Receive switching.

You can usually find good documentation at the PCB level but when the signals go down into
an IC this may be more difficult. The needed details do sometimes leak out of the manufacture
over time. An example of this is the information needed to allow you to change the reference
clocking frequency on the ADALM-Pluto by Analog Devices.

Some FPGA models are available in the public domain like the code used in the TAPR HPSDR
and the Hermes Light for HF SDRs.

Hopefully this explains the difference in FPGA vs. CPU approaches to DSP.

55GNU Radio Microwave Update 2019

Additional References

1. https://www.ettus.com/sdr-software/gnu-radio/ The GNU Radio web page
with software, hardware and news about events.

2. https://greatscottgadgets.com/sdr/, Lessons on DSP and the Hack RF
presented by Michael Ossmann of Great Scott Gadgets. A very nice easy to
understand presentation especially lessons 6 and 7.

3. https://labsdl.wordpress.com/2018/08/30/gnu-radio-tips-how-to-con-
vert-wav-iq-file-into-raw/ This is an utility use of a Flow Graph to convert a
WAV file to a RAW file.

4. https://www.eevblog.com/forum/rf-microwave/adalm-pluto-as-vh-
fuhf-spectrum-analyzer-and-a-tracking-generator/ A discussion on using a
SDR (Pluto) as a tracking signal generator including flow charts.

5. http://aaronscher.com/GNU_Radio_Companion_Collection/GNU_Radio_
Companion.html A collection of GNU Radio Flow Charts with documenta-
tion presented by Dr. Aaron Scher of Oregon Institute of Technology

6. https://sv1cal.com/usrp_map65/ Michael Margaras SV1CAL documents his
use of the Ettus USRP for EME operations and other radio work.

7. https://stackoverflow.com/questions/33435642/programming-an-oot-
module-with-variable-i-o-type Tip on writing OOT blocks.

8. https://github.com/gnuradio/gr-tutorial A tutorial on OOT module for
GNU Radio

9. https://wiki.analog.com/resources/tools-software/linux-software/gnura-
dio Analog Devices Wiki on GU Radio

10. http://oz9aec.net/radios/gnu-radio/grc-examples Alexandru Csete
OZ9AEC Example page

56 GNU Radio Microwave Update 2019

57GNU Radio Microwave Update 2019

