Weather box May 7, 2022

KM5PO – KI5EMN

WWW.NTMS.ORG

W5HN

1

Need to learn

- Revisiting our previous best DX we got a surprise
 - Try to extend from 17 km to 20 km
 - Return to 17 km first
 - Signals weaker than before at 17 km
 - Wind gusts began to move dish
 - Signal dropped much lower
 - Signal could be acquired by aiming with use of rifle scope.
 - Heat shimmer noted sighting through scope. Temperature was 81 F at both locations
 - European post referring to red kit birds using thermal = increased path losses at 122 GHz
 - Signal dropped into noise.
 - What are the conditions that caused this fail?

Red Kites

- Dave G8KHU post in groupsio 122 GHz group
 - Short path test was successful
 - Longer path (3 km) should have provided 15 dB margin S/N but signals were much much weaker – barely audible on CW
 - Dave comments:
 - There was considerable heat shimmer and both of us noticed it felt humid so the increased path attenuation could be due to thermal boundaries / disturbances or local increased humidity or something else entirely! We'll try this path again as it should go.
 - Sadly there were no Red Kites around as they give a very useful indication of thermals, when they don't have to flap for 20 minutes there's a lot of rising air around
- Thermals = problem at 122 GHz! WA5VJB confirmed!
- Red Kites are like our "Hawk" or "Eagle"

Let's build the Weather box

- Barry Chambers G8AGN design
- Arduino sketch is available from Barry email: <u>b.chambers@sheffield.ac.uk</u>
- Upgraded sketch is available from Jim McMasters email: <u>km5po@aol.com</u> (we found a couple tweaks to make in the G8AGN code and documented the source to line up with the hardware build described in this presentation)
- Great write up here on 122 Ghz propagation and the Weatherbox
 - https://microwavers.org/scatterpoint/2020/Scatterpoint_2001.pdf
 - "In practice, the weather on any particular day will determine the actual values of all three variables barometric pressure, temperature and RH and so if accurate estimates of losses are to be established then they must all be measured at the time of making a contact if a later comparison between measured and predicted received S/N is to be made."

Let's build the Weather box

- Gather the parts
 - Mega 2560 Arduino
 - LCD GeeekPi 2004
 - Keypad DEVMO 4x4 Matrix
 - Sensor BME280
 - GPS-NEO-6M
 - SD card? HiLetgo Micro SD TF card (use 32 GB card)
 - Internal battery and recharge scheme
- Download the sketch to the Arduino
- Build the wiring harnesses
- Perform smoke test
- Prepare the enclosure
- Assemble all parts
- Learn stuff!

WWW.NTMS.ORG

6

Mega 2560 connections

Pin headers shipped with Mega 2560

Additional connectors

Keypad & SD card

WWW.NTMS.ORG

Sensor & GPS

WWW.NTMS.ORG

Pin out guide

Component	Pin Function	Connect to Mega2560 pin
	VCC	5V
GPS module	GND	0V
	ТХ	19
	RX	18
PME280 sensor default I2C address	VIN	3.3V
	GND	0V
	SCL	21 (SCL)
0270	SDA	20 (SDA)
20x4 LCD display	VCC	5V
	GND	0V
	SCL	21 (SCL)
0X27	SDA 20 (SDA)	20 (SDA)
Keypad	LH lead or pin	5
	Intermediate leads	6 7 9 0 10 11
	or pins	0, 7, 8, 9, 10, 11
	RH lead or pin	12
	GND	0V
CD condinterface	VCC	5V
	MISO	50
SD card interface	MOSI	51
	SCK	52
	CS	53

Wiring

North Texas NTMS Microwave Society

WWW.NTMS.ORG

Enclosure

Enclosure

Opening for PME280

sensor and standoff

mounting hole

Openings for power switch, recharge port and SD card interface slot

Mount SD card on scrape wood riser, trim front edge of SD card interface PCB

Mount GPS on standoffs, antenna with tape, add standoff for power buss.

Smoke test successful in plastic bucket on 3rd floor balcony

Final assembly

Final assembly

W5HN

Sensor guard

2 part plastic faucet filter. Knock out center and open side vents

Epoxy over PME280 sensor

Bezel

KI5EMN 3D printed bezel

Inputs and outputs

- Inputs (system and path parameters):
 - Frequency in GHz
 - Path length in km
 - Transmit power in mW
 - Transmit antenna gain in dB
 - Receive antenna gain in dB
 - Receive noise figure in dB
 - Receive bandwidth in kHz
- Outputs
 - 10-digit Maidenhead locator of your position
 - GPS clock date & UTC time
 - Atmospheric relative humidity (%)
 - Barometric pressure (mb)
 - Temperature (C)
 - Calculated water content of the atmosphere (gm/m3)
 - Additional attenuation (dB) due to presence of water vapour and atmospheric gases along the path
 - Estimated received carrier to noise ratio (dB)
 - Calcs for last 2 outputs are based on attenuation model given in ITU-676-12 report and are valid for any frequency between 1 and 1000 GHz

Additional features

- North

- SD card logging
 - How often to write log record is prompted

EM12	MU78UH	25042	2				
122.3	50 17.0 0.	50 40	20 12 2.4				
Time	Bar press	Temp	Rel Hum	H20	GL	path loss	C/N dB
21:31	1008.1	22.4	37.4	7.5	14.0	172.8	12.7
21:32	1008.1	22.6	36.7	7.4	13.8	172.6	12.8
21:33	1008.5	22.0	37.2	7.3	13.7	172.5	12.9
21:34	1008.2	22.2	37.0	7.3	13.7	172.5	12.9
21:35	1008.1	22.4	35.8	7.1	13.5	172.3	13.2
21:36	1008.3	22.5	35.8	7.2	13.5	172.3	13.1
14 hou	urs later:						
11:03	1013.6	14.1	57.6	7.0	14.8	173.6	11.9
11:04	1013.6	14.0	56.7	6.8	14.5	173.3	12.1
11:05	1013.7	13.9	58.5	7.0	14.8	173.7	11.8
11:06	1013.8	13.9	58.3	7.0	14.8	173.6	11.8

Additional features

- Storage of up to 10 system and path settings
 - Once save and recalled you can tweak any input
 - Set up your two station parms and vary the distance
 - Set up your two station parms and vary the frequency

134 GHz – C/N= .08 dB

122 GHz – C/N=2.7 dB

Additional features

• Use same parms and vary frequency

- North

Texas

NTMS

Microwave Society

W5HN

Twins - almost

W5HN

WWW.NTMS.ORG

Next steps

- Gather usage information during tests
 - Get experience before next cold season
 - Review on line propagation studies at higher mw freq.
- Improve design with touchscreen TWB
 - Smaller packaging not much higher cost
 - More intuitive use
- Prototype a remote controlled environment collections unit
 - No screen or SD card interface
 - Add cell phone card, control via text (similar to KI5EMN remote controlled high powered LED)
 - Possibly post up data to a web service allowing for automated integration of data from multiple remote sensors across the path

KI5EMN touchscreen prototype

• Nextion 3.5" 480x320 display

WWW.NTMS.ORG

W5HN

KI5EMN touchscreen prototype

	Help Menu				
Data Entry					
Logging	Data Ent	ry Menu			
Memory	Frequency	MHz			
Graphs	Path Length	km	Real-time Information		
	TX Power	mW	Location Maidenhead		
	TX Gain	dB	Date / Time		
	BX Gain	dB	Path Length	km	
	BX Noise Figure	dB	Relative Humdity	mb	
	BX Bandwidth	kHz	Temperature	°C	
			Water Content	gm/m	
		Cancel Save	Gas Loss	dB	
			Carrier to Noise	dB	

• Nextion iDE screen design

Exit

KI5EMN touchscreen prototype

Sensor interface
tests

• Sensor data graphing

Additional resources

• Mega pro CH340G Atmega2560

- DIM==0G-00005641==MEGA-PRO-CH340GATmega2560.pdf (robotdyn.com)
- DD1US WeatherBox build
 - WeatherBox by G8AGN (dd1us.de)
- Barry Chambers G8AGN original WeatherBox documentation and 122 GHz propagation discussion
 - <u>https://microwavers.org/scatterpoint/2020/Scatterpoint_2001.pdf</u>
- On-line propagation path web page (demoed in previous presentations) VK5ZD
 - Path Loss Calculator (vk5microwave.net)

Questions?

WWW.NTMS.ORG