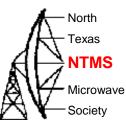


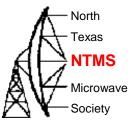
A portable flyswatter for 47 GHz

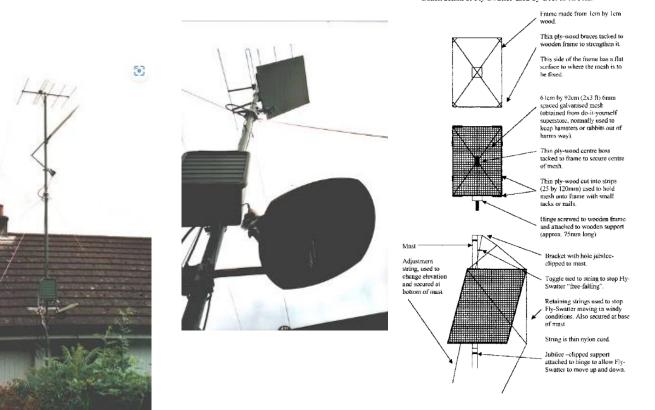

August 10, 2024 KM5PO

The Problem

- Some rover locations are blocked by 20-25 foot high trees, otherwise good and support 10 & 24 GHz contacts.
- Clearing near field obstructions will open up more usable (47 GHz) locations for contesting purposes.
- Need to extend our current DX record beyond 99 km!
- Adding a larger flyswatter aperture would yield 24 and 10 GHz.
- Rotating mast would make a good home based flyswatter.
- If we used a mirror could we reflect a laser pwm modulated signal?
 - Laser aimed at reflective tape in the center of flyswatter reflects well

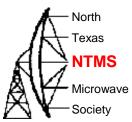
W5HN





3

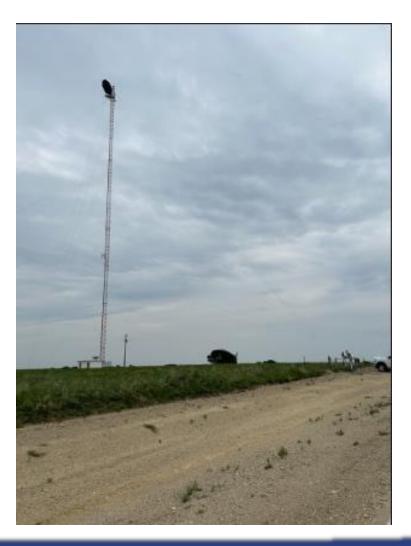
Temporary setups


Construction of Fly-Swatter used by G0JMI on 3cm.

WWW.NTMS.ORG

W5HN

W5HN

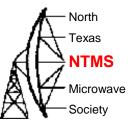

A Fly swatter in EM01

WWW.NTMS.ORG

A Fly swatter in EM01

W5HN

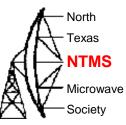
WWW.NTMS.ORG

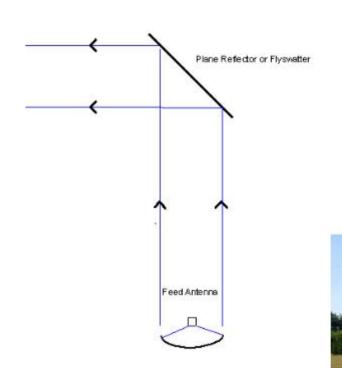

- North

Texas

NTMS

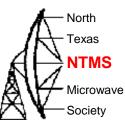
Microwave Society


Various designs



7

W5LUA



WWW.NTMS.ORG

W5HN

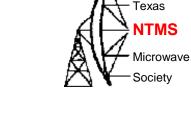
• Using W1GHZ "Periscope" calculator an optimum spacing and aperture size was determined.

PERISCOPE ANTENNA GAIN CALCULATOR						
	W1GHZ 2000					
ENTER INPUT PARA	METERS	HERE:				
Frequency	47.088	GHz				
Dish diameter	0.46	meters		Note: 1 meter = 3.28 feet		
Flyswatter Aperture	0.4	meters				
Height (reflect. Spacing)	10.5	meters				
Suggested flyswatter =	0.4	meters	for this	heigh	t and free	quency
READ FINAL RESULTS HERE:						
System Gain	38.0	dBi				
Dish Gain	44.5	dBi				
"FEEDLINE" equivalent	-6.5	dB (effe	ctive gair	of pei	riscope ov	er dish)

WWW.NTMS.ORG

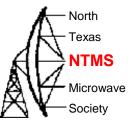
W5HN

- To support the flyswatter-
 - Spiderbeam 10 meter aluminum mast + 5' standpipe


Aluminium HD telescopic push-up mast 10m (33ft)				
fully extracted length (height)	10m (33ft)			
transportation length	1.70m (5ft 7")			
weight	10.5kg (23 lbs)			
bottom diameter	70mm (2 3/4")			
top diameter	40mm (1 1/2")			
wall thickness	2mm (1/12")			
number of segments	7			
pole material	high quality anodized aluminium strong interlock clamps made from stainless steel			

45mm standpipe for Spiderbeam

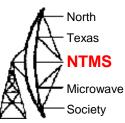
Separate tube segment with stainless steel clamp:


outer diameter	45mm
wall thickness	2mm
length	150cm
suitable for	all masts with a top segment of 40mm diameter

North

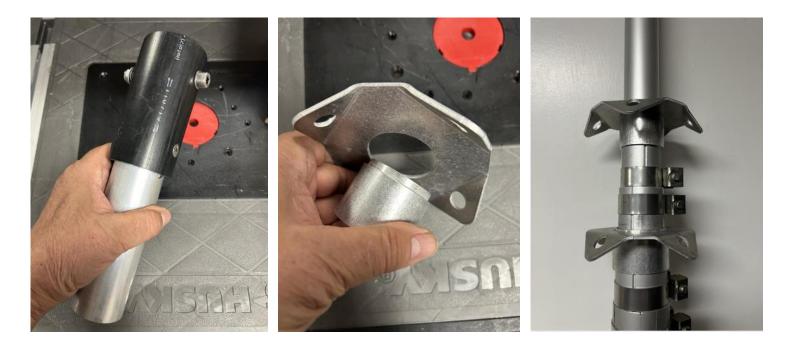
W5HN

WWW.NTMS.ORG


• To support the flyswatter-

W5HN

• Base for mast consists of 2" receiver plate, DX Engineering hinge plate

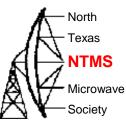


• To rotate the flyswatter-

W5HN

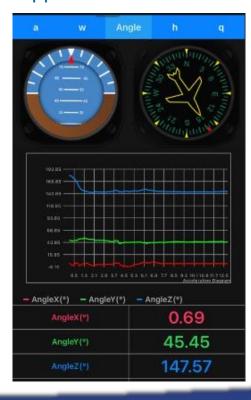
- Yaesu G-450 rotator. Uses step transition to match rotor to mast bottom 70mm
- Guy rings allow for mast rotation

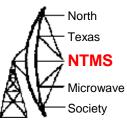
North Texas NTMS Microwave Society


Flyswatter elevation control

W5HN

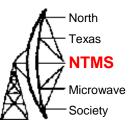
- Actuator with 4" stroke gives approx. +/- 5 degrees from 45 degrees
- Arduino and DC driver board supplies +/- 12 v PW modulation to actuator
- Easy to add speed control




• Flyswatter elevation readout

W5HN

• Witmotion sensor broadcasts elevation value via blue tooth to cell phone Insert Witmotion sensor mounted and cell phone app screen

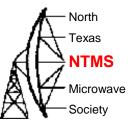


• Flyswatter calibration

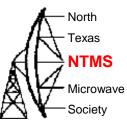
W5HN

• Calibration of rover dish to flyswatter uses laser temporarily mounted to dish

• CSVHF conference – Cedar Rapids, IA – July 2024



WWW.NTMS.ORG


W5HN

Next steps

- Stabilization arms to reduce mast movement
- Real time feedback from WitMotion to Arduino
 - Set the angle with a CAL button
 - Arduino then sends compensating commands to actuator based on real time WitMotion sensor feedback
- Build a second stack for fixed station use.
 - Trees are 30 feet tall so only need flyswatter at 35 feet!

Questions?

