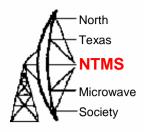
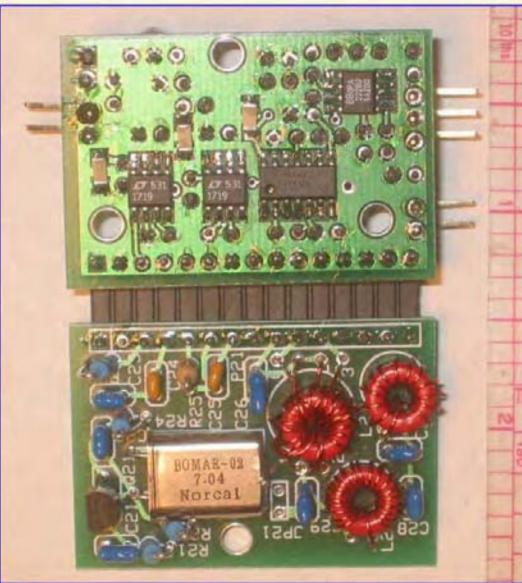


Using the Soft Rocks as Microwave IF Spectrum Analyzers

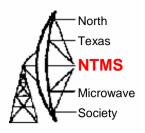
By
Al Ward
W5LUA
July 28, 2007
Central States VHF Society
San Antonio, Texas

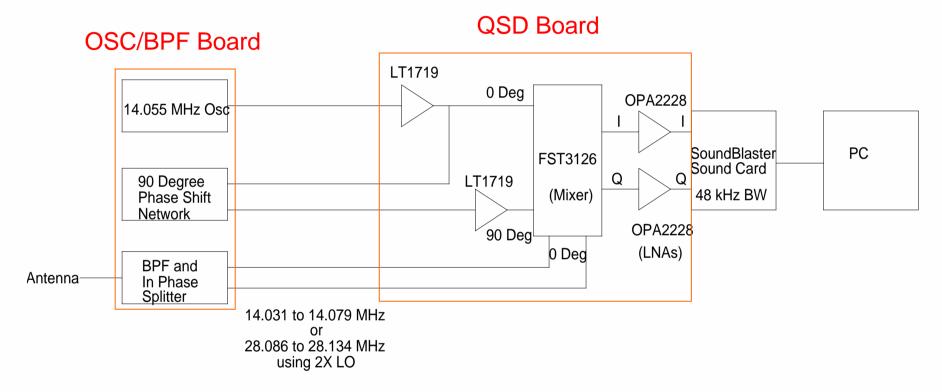



Introduction

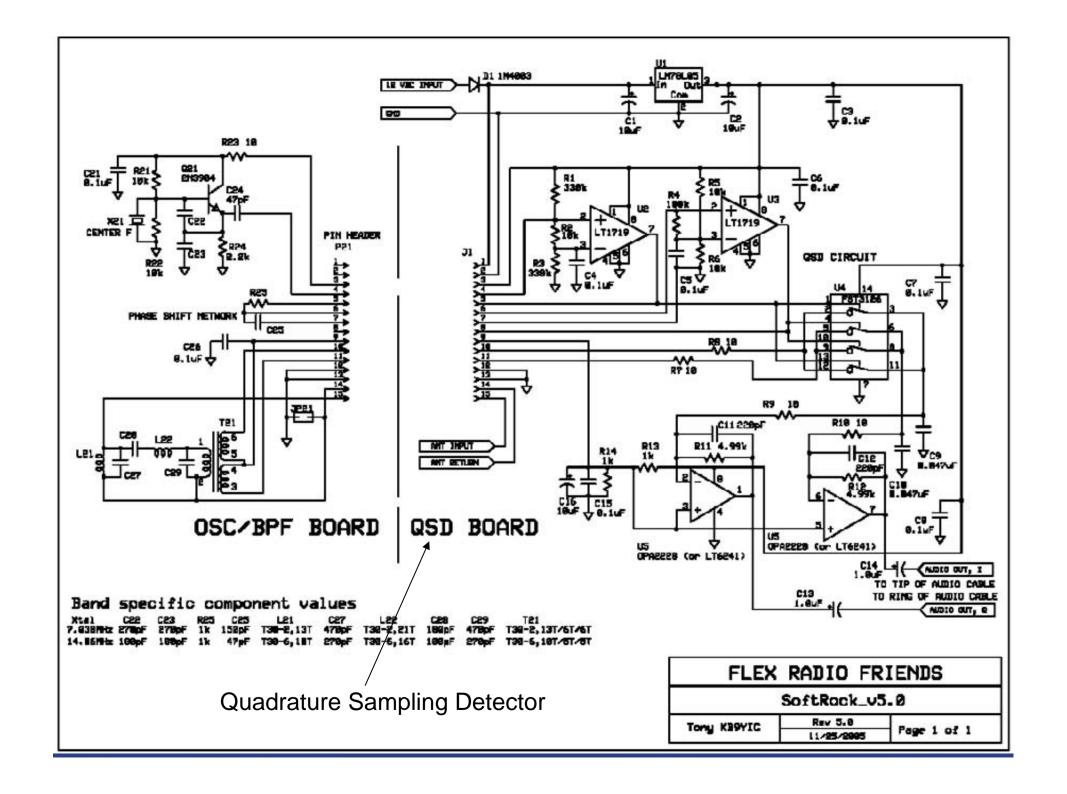
- The Soft Rocks got their start in the QRP community with the desire to introduce the amateur to very inexpensive Software Defined Radio
- I have used the Soft Rock 5s and 7s as IFs for my VHF and higher equipment
- Unfortunately the entire supply of 800 of the SR5s has been sold
- The SR6s are available presently but only go as high as the 30 meter band.
- However, I have heard from Tony Parks KB9YIG that a 10 meter version of the SR6 will be available late Summer – It will be called the RXTXv6.2 – keep an eye on the SoftRock 40 Yahoo Group website for latest information
- The slides to follow describe my use of the SR5 as a 10 meter IF and the basic use can be applied to the forth coming 10 meter version of the SR6.
- Since the circuit concepts are so simple, one could probably just homebrew their own!
- And the software is all Free!

Original Soft Rock 5 Designed by Tony Parks KB9YIG

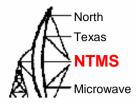



2 Board Approach
Top board has the
LNAs, Comparators
and QSD
Bottom board has
the frequency
sensitive
components – LO,
band pass filter and
phase shift network

http://ewjt.com/kd5tfd/sdr1knotebook/sr40/v5-1stlook/index.html http://amqrp.org/kits/softrock40 /version5.html http://www.hamsdr.com/Home.aspx raparks@ctcisp.com

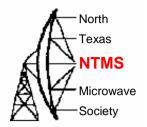


Block Diagram of the Soft Rock 5



Quadrature Sampling Detector with in-phase feed of the RF and quadrature feed of the LO and 2 low noise IF amplifiers that provide I&Q for the sound card.

SoftRock v5.0 Band Specific Component Values



Band (MHz)	C22 (pF)	C23 (pF)	C24 (pF)	C25 (pF)	C27 (pF)	C28 (pF)	C29 (pF)	L21 (uH)	L21 wind/core	L22 (uH)	L22 wind/core	T21 core	T21 primary	T21 secondaries
1.800	470	470	220	620	6800	470	6800	1.1	16T #30 on T30-2	14	57T #30 on T30-2	T30-2	16T #30	7T/7T #30 bifilar
3.500	470	470	220	330	1000	360	1000	1.4	18T #30 on T30-2	3.9	30T #30 on T30-2	T30-2	18T #30	8T/8T #30 bifilar
7.000	270	270	47	150	470	180	470	0.73	13T #26 on T30-2	1.9	21T #26 on T30-2	T30-2	13T #26	6T/6T #26 bifilar
10.100	270	270	47	100	330	120	330	0.52	11T #26 on T30-2	1.2	17T #26 on T30-2	T30-2	11T #26	5T/5T #26 bifilar
14.000	180	180	47	47	270	100	270	0.36	10T #26 on T30-6	0.92	16T #26 on T30-6	T30-6	10T #26	5T/5T #26 bifilar
18.068	150	150	47	47	180	69	180	0.36	10T #26 on T30-6	0.71	14T #26 on T30-6	T30-6	10T #26	5T/5T #26 bifilar
21.000	150	150	47	47	150	62	150	0.29	9T #26 on T30-6	0.61	13T #26 on T30-6	T30-6	9T #26	4T/4T #26 bifilar
24.890	120	120	47	47	120	47	120	0.24	8T #26 on T30-6	0.52	12T #26 on T30-6	T30-6	8T #26	4T/4T #26 bifilar
28.000	100	100	47	33	120	47	120	0.18	7T #26 on T30-6	0.44	11T #26 on T30-6	T30-6	7T #26	3T/3T #26 bifilar

From Tony WA8RJF

Band (MHz)	R24 (k)	C22 (pF)	C23 (pF)	C24 (pF)	C25 (pF)	C27 (pF)	C28 (pF)	C29 (pF)	L21 (uH)	1.21 wind/core	L22 (uH)	L22 wind/core	T21 core	T21 primary	T21 secondaries
1 800	3.3	470	470	220	680	6800	470	6800	1.1	16T #30 on T30-2	14	57T #30 on T30-2	T30-2	16T #30	7T/7T #30 bifilar
3.500	2.2	470	470	220	330	1000	390	1000	1.4	18T #30 on T30-2	3.9	30T #30 on T30-2	T30-2	18T #30	8T/8T #30 bifilar
7.000	2.2	270	270	47	150	470	180	470	0.73	13T #26 on T30-2	1.9	21T #26 on T30-2	T30-2	13T #26	6T/6T #26 bifilar
10.100	2.2	270	270	47	100	330	150	330	0.52	11T #26 on T30-2	1.2	17T #26 on T30-2	T30-2	11T #26	5T/ST #26 bifilar
14.000	2.2	180	180	47	47	270	100	270	0.36	10T #26 on T30-6	0.92	16T #26 on T30-6	T30-6	10T #26	5T/ST #26 bifilar
18.068-21.000	2.2	150	150	47	47	180	100	180	0.36	10T #26 on T30-6	0.71	14T #26 on T30-6	T30-6	10T #26	5T/5T #26 bifilar
24.890-28.000	2.2	100	100	47	47	120	56	120	0.24	8T #26 on T30-6	0.52	12T #26 on T30-6	T30-6	8T #26	4T/4T #26 bifilar

http://www.amqrp.org/kits/dds60/index.html

This is an inexpensive kit that allows you to pick an LO of 28.1 MHz

DDS-60 Kit

A 0-60 MHz coverage VFO with built-in amplifier and variable output level from 0 to 4V p-p, manually adjusted with a trimpot or software controlled with a digipot.

Receive Aniel Sweller State State Sweller State State

This Your Joseph Air Surger Image)

Buffort Free (Gins for larger Image)

| Overview | Schematic | Ordering | Availability | Ways to Use |

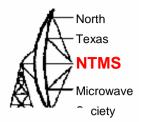
| Assembly & User Manual | Quick Assy Guide | Builder's Notes |

Article: "Working with Surface Mount Technology (SMT) Parts"

Tech Topic: DDS 60 Spectral Purity Study

Kit Status: In stock

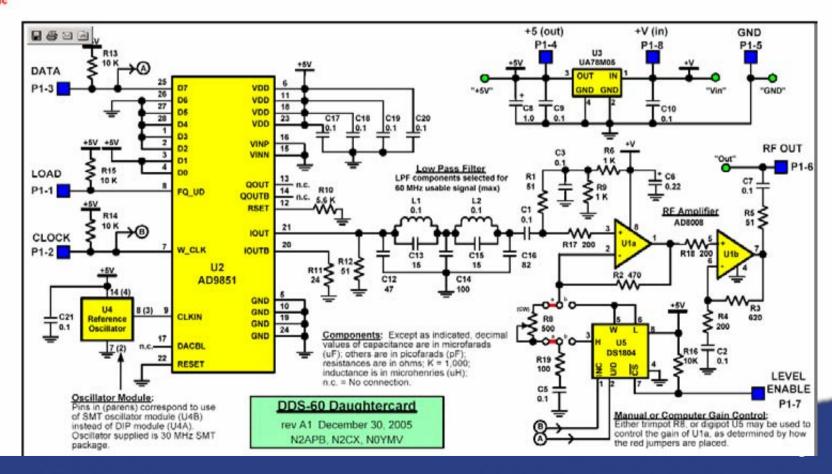
Overview

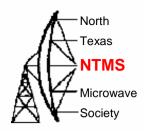

Some three years ago we introduced the original DDS Daughtercard (www.rigro.org/dds) to the ORP community, providing a low cost and modular way to add a precisely-adjustable 0-30 MHz signal generator to one's project. All you had to do was add an AD9850 DDS chip (available as a free sample from the good people at Analog Devices) and +12V, and then any number of popular microcontrollers could control the DDS Daughtercard to have it serve as a rock-solid VFO. Over 1,000 of these little cards were sold!

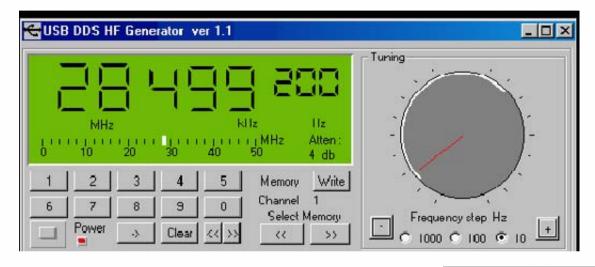
Well, there is still a demand for this inexpensive little kit and an ever-growing list of uses for it so we updated the basic design and are now ready to provide the new_and_improved_DDS-60 daughtercard. This self-contained functional module generates a good-quality RF signal from 1-60 MHz by using a small pc board to contain just the bare DDS essentials—an Analog Devices AD9651 DDS chip, a clock oscillator, a 5th-order elliptic filter and an adjustable-level RF amplifier. Additionally, an onboard 5V regulator is provided so you only need provide a battery or power supply ranging anywhere from 8-16V DC. The three digital control lines, the power supply, and the output signal are all available on a pin header at the board edge, and the DDS-60 is pin-compatible with the original DDS Daughtercard. The schematic is shown below on this page.

The 8-position pin header at the board edge serves to allow DDS-60 to be plugged into and used in any project you might have on your bench, regardless of which microcontroller is employed. Just provide a single strip socket (e.g., a 16-pin IC socket split lengthwise) on the project board and plug in the DDS baughtercard. Heck, you don't even need a dedicated microcontroller – use a cable connected to the parallel printer port of your PC and use public domain PC software to control the DDS board. See the Ways to Use section for a number of custom solutions for you to easily control your DDS-60 daughtercard.

Once your controller-of-choice serially loads the 40-bit control word into the DDS, the raw waveform is presented to an elliptic filter that removes unwanted high-end frequency components, resulting in a signal of sufficient quality to serve as a local oscillator for a transceiver. We regularly see great signal quality, with harmonic content of -40 dB.


DDS-60 using the AD9851

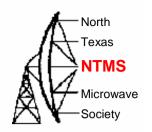

Specifications

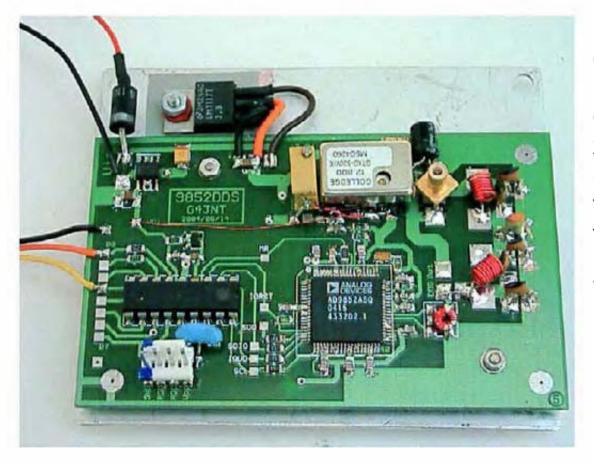

- Power requirements: 8-16V DC at 130 ma (typical).
- > RF Output fully adjustable to +16 dBm, or about 4V p.p.
- > Output signal not affected by varying +V supply voltage great for battery operation. [
- Near-constant output level from 1-60 MHz.
- Good signal purity harmonics down approximately 40 dB from the fundamental.
- > Pin-compatible with the original DDS Daughtercard module
- Only few changes needed in existing AD9050 software drivers

Schematic

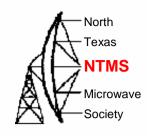


Softmark USB HF Generator

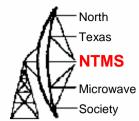



http://www.ar.com.au/~softmark/

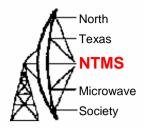
G4JNT AD9852 DDS

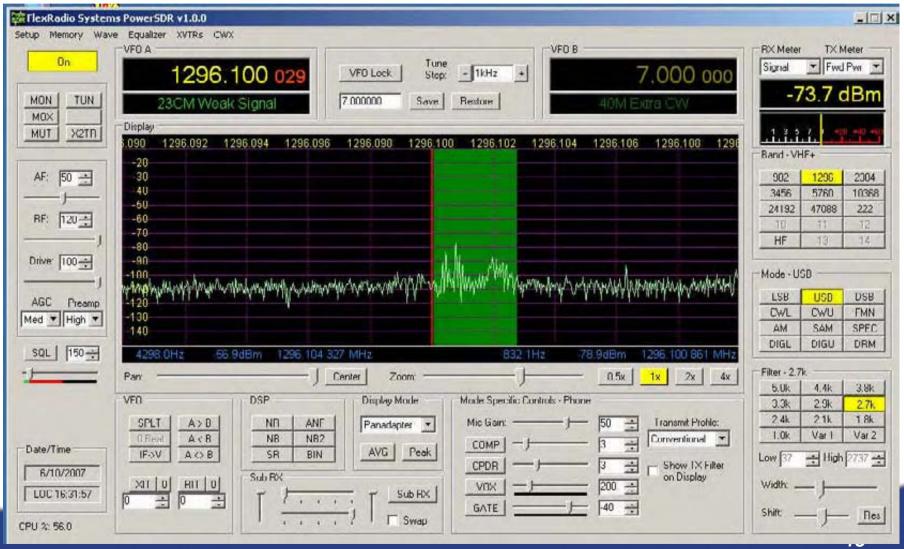

http://www.scrbg.org/g4jnt/AD9852module.pdf

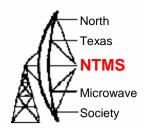
Can be programmed up to .35 X Clock frequency
Clock frequency can be 4 to 20 X reference frequency
So for a 10 MHz reference frequency then max
frequency is .35 X 200 = 70
MHz
Very nice for Soft Rock

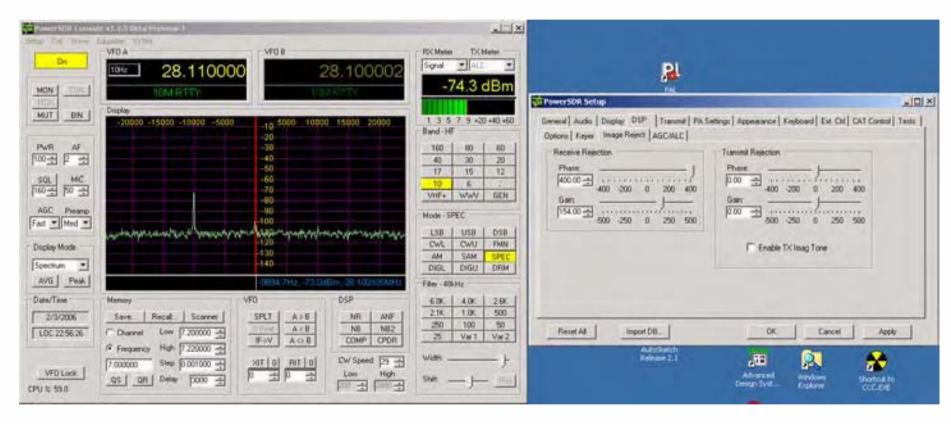


Other Options for the LO


- Signal generator
- Clock oscillator

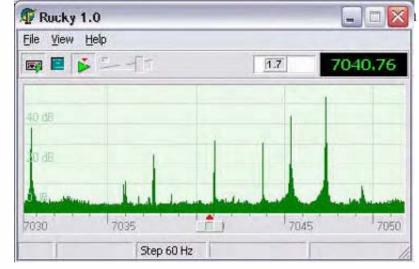

CW Signal on 1296.100 MHz

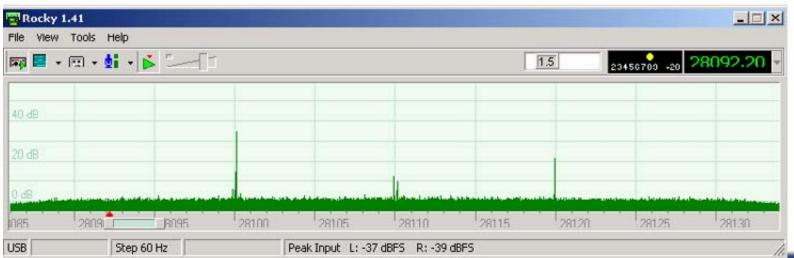



KM5PO on 1296.1 MHz SSB

Optimizing I & Q Amplitude and Phase for Best Image Rejection

http://www.dxatlas.com/Rocky/


Rocky 3.2


FREEWARE

by Alex VE3NEA

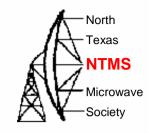
ve3nea@dxatlas.com

SDR software for **SoftRock40**

WWW.NTMS.ORG

15

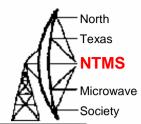
North

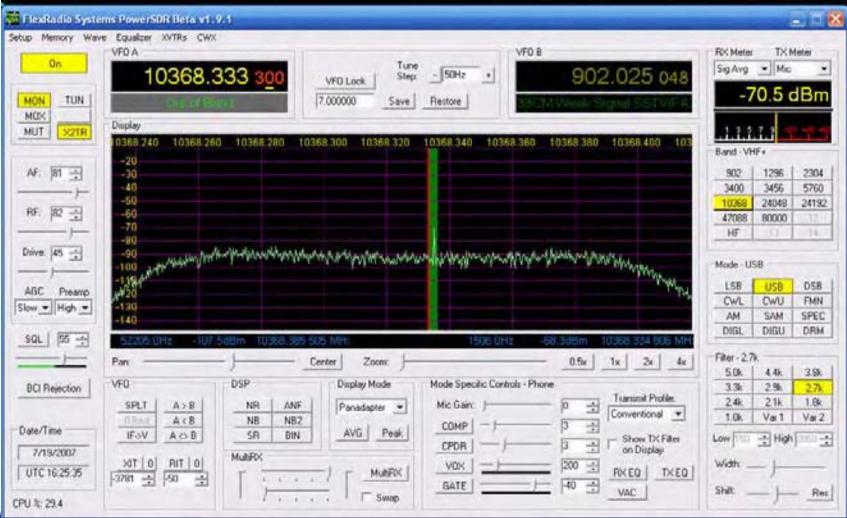

Texas

NTMS

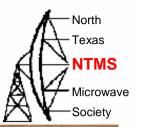
Microwave Society

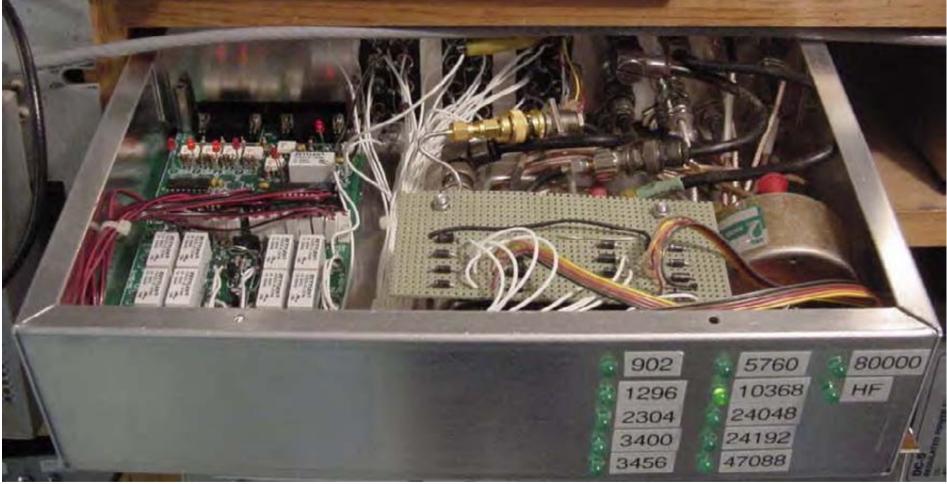
WINRAD by I2PHD

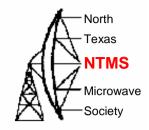


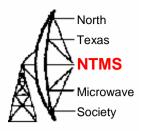

Uses outputs from any sound card

Can supply up to 192 kHz of passband display Excellent program & support from Alberto


http://www.winrad.or g/winrad/index.html


SDR-1000 Microwave Radio w/ K3TUF UCB


SDR-1000 Controlled K3TUF UCB for Microwave Band Switching


No more bandswitching knob!

SDR-1000 XVTR Setup

nabled	Band Button	UCB Address	Button Text	LO Offset (MI Iz)		LO Error (kl lz)	Begin Freq (MHz	z)	End Freg (MHz)		X Gain ID)	RX Only	Power	XVTR RF TX
V	0	0 =	902	874.0	÷	0.000 ÷	900.000000 -	•	905.000000 =	0.	0 ÷	Г	50 💠	Г
V	1	1 ±	1296	1268.0	+	0.000	1290.000000 =		1298.000000 -	0.	0 ÷	Г	50 ÷	F
V	2	2 ÷	2304	2276.0	÷	0.800	2303,000000 -	-	2325.000000 =	0.	0 ÷	П	50 🛨	Г
V	3	3 ÷	3400	3372.0	=	0.700 ÷	3399.000000 -	+	3401.000000 -	0.	0 ÷	Г	36 ÷	Г
7	4	4 ÷	3456	3428.0	=	0.700 🛨	3400,000000 -	-	3460.000000 -	0.	0 ÷	Г	50 🛨	Г
V	5	5 ÷	5760	5732.0	±	0.000 ÷	5759.000000 =		5770.000000 🚉	0.	0 ÷	Г	22 💠	Г
V	6	6 💠	10368	10340.0	-	4.000 🛨	10360.000000 -	•	10370.000000 🚉	0.	0 ÷	Г	45 🛨	Г
V	7	7 ÷	24048	24020.0	$\dot{\Xi}$	0.000 ÷	24046.000000 =		24050.000000 -	0.	0 🛨		48 💠	F
V	8	8 💠	24192	24164.0	:	24.000	24191.000000 -	+	24195.000000 -	0.	0 ÷	Г	50 💠	Г
V	9	9 🛨	47088	47060.0	÷	0.000	47087.000000 =	-	47090.000000	0.	0 ÷	П	50 💠	F
V	10	10 ÷	80000	79972.0	÷	0.000	80000.000000 -		80001.000000 ±	0.	0 :	Г	36 ÷	Г
Г	11	回主	11	0.0	÷	0.000	0.000000 -	:	0 0000000 ±	1 1	0 :		100-	П
Г	12	12 -	12	0.0	÷	0.000 ÷	0.0000000	-	0.0000000 ±	1 1	0 ÷	Г	100	Г
Г	13	13 🛨	13	0.0	\pm	0,000	0.0000000 =	•	0.0000000	1 1	0 💠	Г	100-	П
Г		14 🚉		0.0	÷	0.000 ÷	0.0000000	-	0.000000 ±	F	0 ÷	Г	100-	П
Г		15 🚓		0.0	÷	0.000	0.000000 -	-	0.000000	1 6	0 -	Г	100-	Г

Summary

- Great for a microwave IF spectrum analyzer Frequency coverage is crystal frequency plus and minus 24 kHz for a 48 kHz sampling rate sound card
- Software is free!
- Receiver can become a well calibrated small signal power meter for the lab
- With the DDS-60, the combination can provide receive coverage from 1 to 60 MHz – only need to provide front-end BPF if connected to antenna
- Can also be set up as a spectrum analyzer at the first IF frequency of your favorite "rice-box" radio at a fraction of the cost of an IC-756pro, IC7800 and IC-9000
- Hard to imagine all the neat stuff they can do in software today and to think our soundcards are at least 48 kHz wide receivers!
- Any questions?