45 KWH LFP Whole House UPS

Doug Knabe KN5DK

NTMS Presentation December 7, 2024

Whole House UPS

Or – How to spend money with dubious return
Sturgeon's Law* – 90% of Everything is Crap

*Theodore Sturgeon (1918-1985) - Science Fiction, Fantasy and Horror Author

Agenda

- Concept / Requirements
- NEC / UL Standards that are applicable
- Project Timeline
- Inverter Types
- Construction photos/details
- LFP battery BMS (Battery Management Systems) settings.
- LFP surge current issues when starting A/C compressors

- Supercap installation / cautions
- Pre-charge circuits
- Operational usage data
- Lessons learned
- LFP battery module design and setup

Sum

Links to good sources of information/ Suppliers

45 KWH LFP Whole House UPS Objectives

- Power all house loads from 20kw inverters
- Have 40+ kwhr 48V DC LiFePO4 battery storage system with BMS (battery management system)
- Have optional 10kw Solar arrays
- Have selective load shedding capability to run off-grid
- Control and monitoring system

Initial Naive Assumptions

- Batteries under 60 volts DC are Class 2 and the code doesn't really care about them – FALSE – Class 2 is under 100VA power and batteries are now an Energy Storage System. See UL9540
- An LFP battery pack with 400A 52Vdc will be sufficient for the house FALSE Surge current issues starting motors/compressors
- You can do anything with your house in Texas without inspectors FALSE what if you ever want to sell the house?
- You can manage the system when you are out of town Partly FALSE how do you tell the difference between a house power failure and an internet failure?
- Battery packs in parallel just work FALSE BMS SOC issues
- Salesmen are honest FALSE by inspection

Standards

• Anti Islanding UL Standard 1741

- In the event of a power failure on the electric grid, it is required that any independent power-producing inverters attached to the grid turn off in a short period of time. This prevents the DC-to-AC inverters from continuing to feed power into small sections of the grid, known as "islands." Powered islands present a risk to workers who may expect the area to be unpowered, and they may also damage grid-tied equipment.
- Energy Storage System ESS (>1kwh)
 - NEC Article 706
 - UL Standard 9540
 - https://www.ul.com/news/ul-9540-energy-storage-system-ess-requirements-evolving-meet-industry-and-regulatory-needs
 - Certifies a particular lithium battery in combination with a particular inverter brand and type. At the time this is written UL9540 is the Holy Grail of certifications; installing a combo of battery and inverter that is UL9540-listed will give you that magic-carpet-like ride through electrical inspection!
- Stand-Alone Power System NEC Article 710
- Labeling NEC section 690

Project Timeline

- Oct 12 2022 Sunny Island inverters ordered (x2)
- Oct 16 2022 SI inverters arrive (x2)
- Oct 18 2022 LFP Battery order placed
- Jan 4 2023 LFP batteries arrive
- Jan 2023 System planning and prototyping
- Feb 17 2023 Outside entrance work started
- Feb 2 2023 More SI inverters ordered (+x2)
- Feb 13 2023 SI inverters arrive (+x2)
- Mid-Apr 2023 garage wall reinforcement
- Apr 19 2023 4x SI inverters mounted
- May 6 2023 Garage inverter wiring complete
- May 31 2023 Conduit and wiring runs to service entrance complete
- June 11 2023 House running off-grid except at night when batteries charge
- July-September 2023 A/C softstart units installed
- Nov 7 2023 1000A shunt installed
- March 2024 4 channel, 300A current sense bread board built, measurements taken
- October 2023 Supercap ordered
- March 2024 Supercap delivered
- April 2024 second supercap ordered and received
- May 6 2024 Switched to TXU Free nights and Solar Days plan

Inverter Types and Concepts

- Grid-tie vs off-grid vs hybrid inverters
- Importance of anti-islanding capability
- Frequency Shift Power Control in AC coupled systems

Inverter Types and Concepts

• Grid-Tied Solar Inverter

- ⁻ Grid-tied inverters are permanently connected to the utility grid
- They convert solar-generated DC into AC compatible with the grid's frequency and voltage
- They shut down when the grid goes down to protect grid linemen (anti-islanding)

Off-Grid Solar Inverters

- Part of a standalone system, typically paired with battery storage
- ⁻ Used in remote locations, providing a self-sufficient energy solution

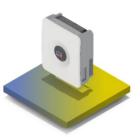
• Hybrid Solar Inverters

- ⁻ Combine the functionalities of grid-tied and off-grid systems
- Feed energy into the grid, store it in batteries, and provide backup power during outages
- Allows energy independence while still being connected to the grid

Background

- Why SMA inverters?
- AC Coupled Multimode System
 - Best flexibility
- SMA largest Germany Solar Inverter mfg \$2Bn Sales
 - Known for being bullet proof
- Familiarity with 1st Gen capability from startup work in 2010-12
- Visited SMA Germany in Dec 2010

SMA Current Gen Energy Storage Solutions


Benefits Components

System details Other solutions

PV Modules

Optimized for your homes solar power needs

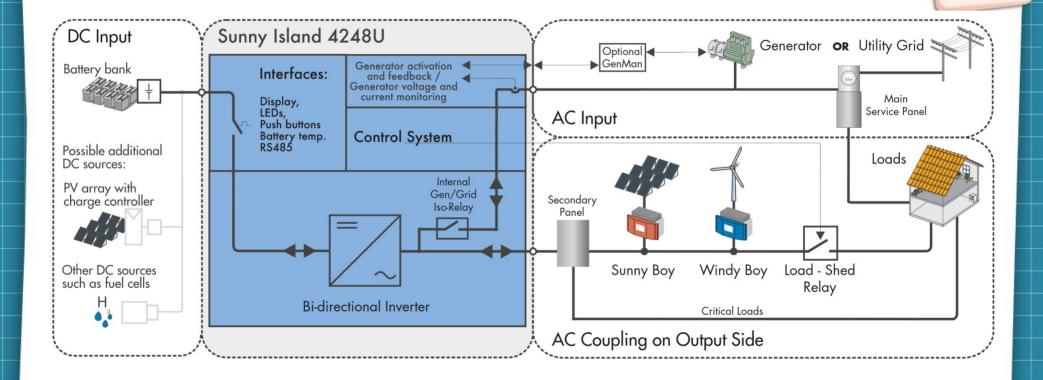
Next steps

Sunny Boy Smart Energy

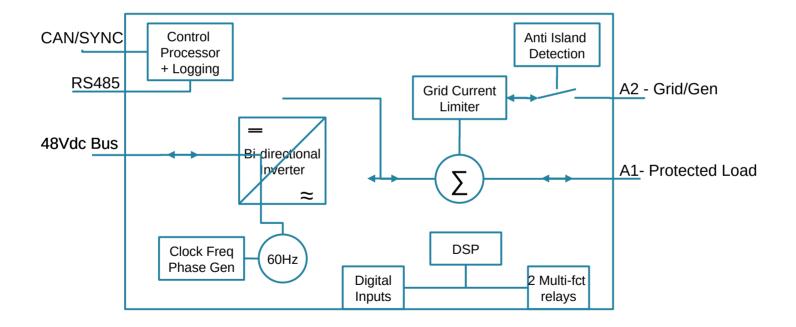
The center of the SMA Home Energy Solution, this groundbreaking hybrid inverter combines the functions of a PV and battery inverter into a single unit, keeping electrical upgrades to a minimum

BYD Premium HVL Battery-Box*

12.0, 16.0, 20.0, 24.0, 28.0, 32.0 (UL9540) This BYD battery enables intermediate storage of unused solar energy and makes it available on demand when you need it the most. *not sold by SMA

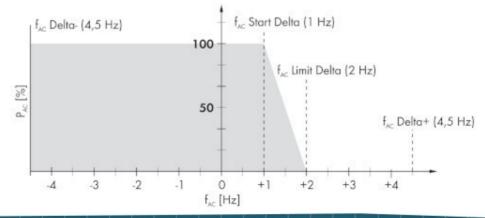


Q


SMA Energy App

The Energy app will give you the most important information about your energy system including production and consumption

1st Gen SMA System Capabilities



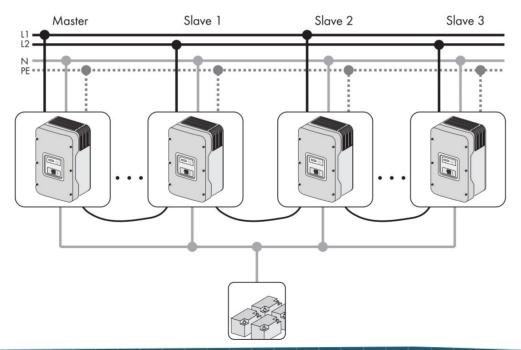
Sunny Island Notional Block Diagram

Frequency Shift Power Control

- FSPC allows a Sunny Island inverter to limit power output of Sunny Boy Photovoltaic inverters connected to the AC side
- Needed when Sunny Island battery is fully charged and the (solar) power available from the PV array exceeds the power required by the connected loads
- To prevent the excess energy from overcharging the battery, the Sunny Island changes the frequency the AC output. This frequency adjustment is analyzed by the Sunny Boy.
- As soon as the power frequency increases and exceeds a defined value "fAC Start Delta", the Sunny Boy limits its power accordingly.

22.2 Sunny Island 6048-US

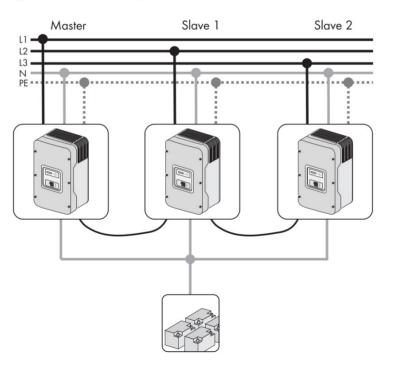
Output Data		SI 6048-US-10
Nominal AC voltage (adjustable)	V _{AC, nom}	120 V (105 V to 132 V)
Nominal frequency	f _{nom}	60 Hz (55 to 65 Hz)
Continuous AC power at 77°F (25°C)	P _{nom}	5,750 W
AC power for 30 minutes at 77°F (25°C)	P _{30min}	7,000 W
AC power for 1 minute at 77°F (25°C)	P _{1 min}	8,400 W
AC power for 3 seconds at 77°F (25°C)	P _{3sec}	11,000 W
Continuous AC power at 104°F (40°C)	P _{nom}	4,700 W
AC power at 104°F (40°C) for 3 hours	P _{3h}	5,000 W
Continuous AC power at 122°F (50°C)	P _{nom}	3,500 W
Continuous AC power at 140°F (60°C)	P _{nom}	2,200 W
Nominal AC current	I _{AC, nom}	48.0 A
Maximum current (peak value) for 60 ms	I _{AC, max}	180 A
Total harmonic factor of the output voltage	K _{VAC}	< 3%
Power factor cos φ		- 1 to +1


In	put	Data

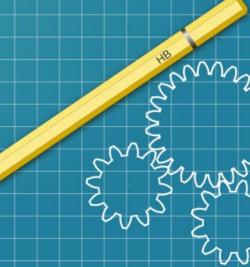
Input voltage (adjustable)	V _{AC, ext}	120 V (80 V to 150 V)
Input frequency (adjustable)	f _{ext}	60 Hz (54 Hz to 66 Hz)
Maximum AC input current (adjustable)	I _{AC, ext}	56 A (0 A to 56 A)
Maximum input power	P _{AC, ext}	6.7 kW
Battery Data		
Battery voltage (range)	V _{Bat, nom}	48 V (41 V to 63 V)
Maximum battery charging current	l _{Bat, max}	140 A
Continuous charging current	l _{Bat, nom}	110 A
Battery type		Lead-acid battery: VRLA/FLA/
		NiCd battery
		Lithium-ion battery
Battery capacity for lead-acid batteries and NiCd batteries	C _{Bat}	100 Ah to 10,000 Ah
Battery capacity for lithium-ion batteries	C _{Bat}	50 Ah to 10,000 Ah

Configuration Implemented

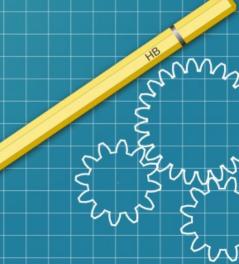
Double Split-Phase System, 240 Vac, up to 24 kW


4 Sunny Island of types SI 4548-US-10 / 6048-US-10. Only Sunny Island inverters of the same type must be used on one line conductor. L1 and L2 may be installed with different types (e.g.: L1 with 2 x SI 4548-US-10 und L2 with 2 x SI 6048US-10).*

Interesting 3 Phase Option


Three-Phase System, 120/208 Vac, up to 18 kW

3 Sunny Island of types SI 4548-US-10 / 6048-US-10.*



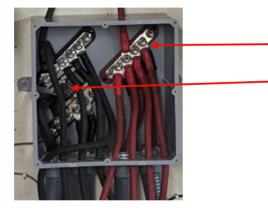
Questions on this section?

Construction

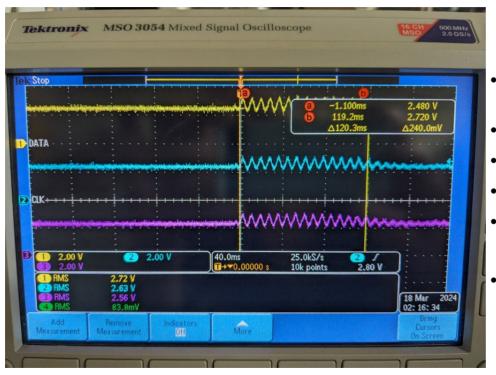
Original Service Entrance

- 200A Square-D HOM Service
- 2 remote subpanels / conduit
 - Garage
 - Sauna
 - West A/C conduit run
- 30A Manual Xfer Switch (lower right)
- No access to back side of service panel due to fireplace

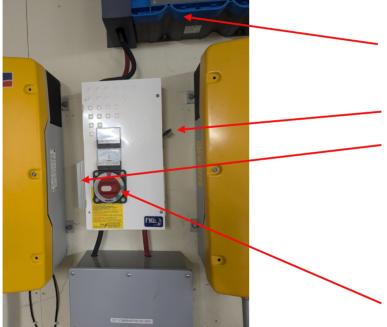
New Load Panel/ Svc Entrance Installation


- Grid panel
- Inverter House panel
- Gen xfer switch
- Inverter cutoff lockout

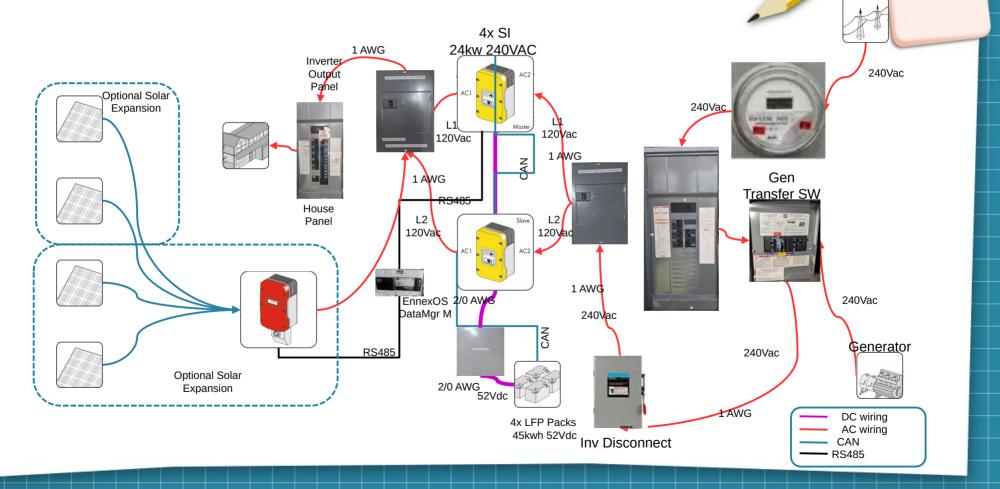
Garage Installation


- 260F SuperCaps AC start
- 4x Sunny Island 2 per phase
- Inverter input breaker
- Pre-Charge circuit
- Inverter output breaker
- DC Bus bars
- ennexOS Datamanager M
- 200A Class T DC fuses
- Lab PS 5A 60Vdc
- 4x 11.6kwh LFP 52v packs

DC Bus Bar


- 300A Bus Bar
- 1000A Current Shunt
 - SI DC Current Sensor

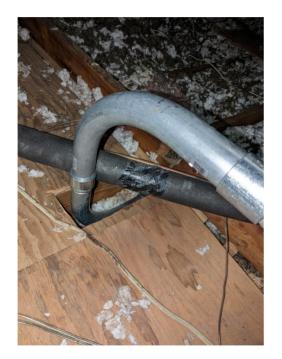
A/C Surge Current


- 120 msec surge 5 Ton Compressor start
- 7-8 60Hz cycles
- 140A 240Vac peak surge
- 650A 52Vdc peak surge
- LFP rated current 100A
 - x4=400A total continuous
- LFP stated surge was 200A/pack
 - BMS limits actually set at 110A for 1 sec

SuperCap / Precharge

- 2x130F Eaton Supercaps
- 260F is a dead short initially
- DC Breaker 250A
 - 18Ω 200 Watt Resistor
 - RC=78 minutes
 - ~6 hrs to charge
- Used only if caps need to be removed/reconnected to DC bus
- Switches PreChg res in/out

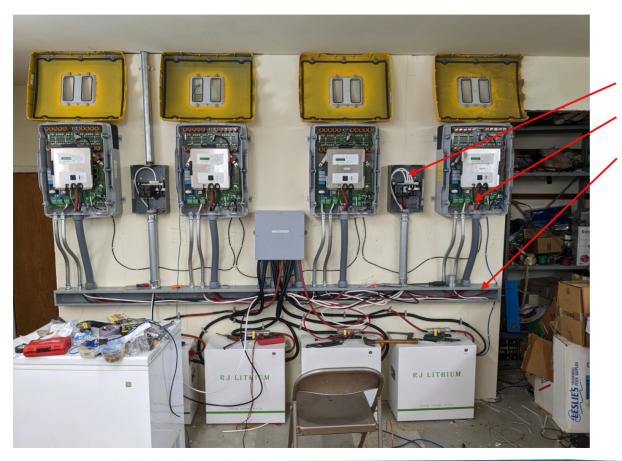
System Diagram



4 kw Generator Use May 2024 Power Failure

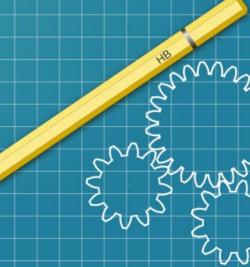
- 2 Day May 2024 Grid Failure
- UPS kept house up w/ AC
- Used gen during day to charge batteries
- Nights were noise free
- Hosted elderly neighbors
- Gas cost 1.64/kwh
- Run off-grid indefinitely assuming gas stations open

Attic Conduit Elbows


- 1.5" Rigid Conduit
- 2x90 degree elbows provide 24" rise and turns needed

Conduit Pipe Threading

- 1.5" Rigid Conduit
- Manual Pipe cutting / threading
- Good workout


Wiring in Progress

- 1 AWG L1/L2 Wiring
- 2/0 AWG Battery Wiring
- 4" Raceway wiring Channel
- 1.5" Rigid conduit main runs
- 2" EMT Conduit

Questions on this section?

LFP Batteries

• Lithium iron phosphate (LiFePO₄)

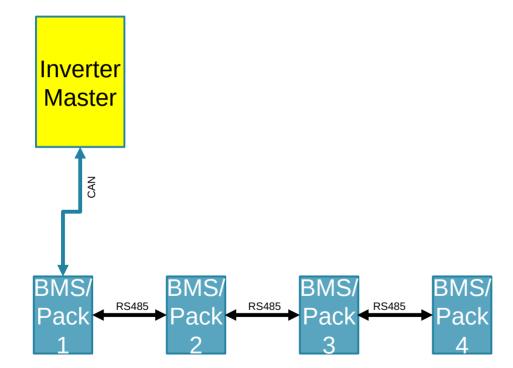
RJ Lithium Battery Specs

Model	RJ-LFP48228-FB
Norminal Power(KWh)	11.6 KWh
Nominal Capacity(Ah)	228Ah
Norninal Voltage(V)	51.2V
Material Type	Lithium Battery (LiFePO4)
Dimensions (mm)	600*302*550mm (Customized)
Weight(Kg)	93 Kg
Discharging Voltage(V)	40~58.4 V
Max Charging	100A
Continuous Discharging (A)	100A
Peak Discharging (A)	200A
Expansibility	116KWh
Installation Methode	Wall / Floor Mounted
Communication Port(Optional)	RS485 / CAN

RJ Lithium Battery Specs

Working Temperature(°C)	-20~65°C
Humidity	0-95% RH
IP Grade (IP)	0-95% RH
Altitude	≤3000m
Authentication Level	TuV/CE/UN38.3
Inverter	SMA/Deye/Growatt/Schneider/Outback/Victron and so on
Design Life(year)	30+ years
Cycle Life (cycle)	>8000Times (100%DOD)

RJ Lithium Batteries



- BMS

- Negative lead safety interruption
- 16 Prismatic LFP cells in Series (16S)
- Voltage sensors for each cell
- Cell Temp Sensors

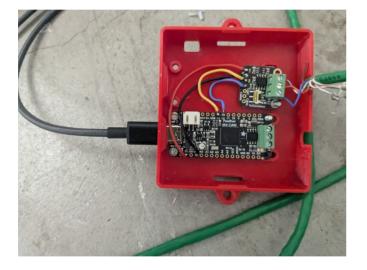
Multipack BMS Control Architecture

- Pack 1 is master BMS
- Responsible for Inv CAN Comm
- Consolidates pack status
 - SOC, Alarms,etc
- Coordinates pack cell balancing

CAN RS485

BMS Limit Settings

◆ 沛城电子PbmsTools V2.5FN 深圳市沛城电子科技有限公司 - □									
Realtime Monitoring Mult	i Monitoria	ng Memory Info. Paramete	er Setting	System Config. Export D	atas				
Cell OV Alarm(V)	3.50 v	🗹 Pack OV Alarm(V)	57.60 \lor	Cell UV Alarm(V)	2.80 🗸	🕑 Pack UV Alarm(V)	44 .80 ∨		
Cell OV Protect(V)	3.70 🗸	Pack OV Protect(V)	58.40 ~	Cell UV Protect(V)	2.70 🗸	Pack UV Protect(V)	43.20 🗸		
Cell OVF Release(V)	3.38 🗸	Pack OVP Release(V)	54.00 ~	Cell UVP Release(V)	2.95 v	Pack UVP Release(V)	47.20 v		
Cell OVP Delay Time(mS)	1000 🗸	Pack OVP Delay Time(mS)	1000 ~	Cell UVP Delay Time(mS)	1000 ~	Pack UVP Delay Time(mS)	1000 v		
CHG OC Alarm(A)	105 🗸	CHG OT Alarm(°C)	60 🗸	CHG UT Alarm("C)	0 ~	✓ MOS OT Alarm(°C)	90 ~		
CHG OC Protect(A)	110 🗸	CHG OT Protect(°C)	65 v	CHG VI Protect(°C)	-5 ~	MOS OT Protect(°C)	115 🗸		
CHG OCP Delay Time(mS)	1000 ~	CHG OTP Release(°C)	55 ~	CHG UTP Release(°C)	0 ~	MOS OTP Release(°C)	85 🗸		
DSG OC Alarm(A)	105 ~	DSG OT Alarm(°C) DSG OT Protect(°C)	65 v 70 v	DSG UT Alarm(°C)	-15 ~	SENV UT Alarm("C)	-15 v		
DSG OC 1 Protect(A)	110 🗸	DSG OTP Release(°C)	60 ~	DSG UT Protect(°C)	-20 ~	ENV UT Protect(°C)	-20 🗸		
DSG OCP 1 Delay Time(mS)	1000 🗸	Balance Threshold(V)	3.50 v	DSG UTP Release(°C)	-15 ~	ENV UTP Release(°C)	-15 v		
DSG OC 2 Protect(A)	150 ~	Balance $\Delta V_{cell}(mV)$	30 ~	Pack FullCharge Voltage(V)	56.00 \vee	ENV OT Alarm (°C)	65 ~		
DSG OCP 2 Delay Time(mS)	100 ~	Sleep Voell(V)	3.15 v	Pack FullCharge Current(mA)	2000 🗸	ENV OT Protect(°C)	75 ~		
SCP Delay Time(uS)	300 🗸	Delay Time(min)	5 ~	SOC Low Alarm(%)	5 ~	ENV OTF Release(°C)	65 ~		
Read	All	CLS Write All	Reset	Setting Import	Export	Set As Default			
VER: P16S100A-21001-2.00	BMS S/N:	210012022700079P PACK	5/N: 9902016 811	228011-220 сомм:	Normal		47:11 市城 1/10/10 由子		


BMS Pack Status

市城电子PbmsTools	V2.5FN						深圳	市沛城电	于科技	和限公司	×
altime Monitor	ing Mul	ti Moni	toring	Memory	y Info.	Par	rameter S	Setting	g Sys	stem Co	onfig. Export Datas
2 3	4 5	6	7	8	9 10	0 1	11 12	13	14	15	Serial Port Port COM4 V Baud Rate 9600 V Auto Display
ack Information Pack Voltage	54.476	V	Temp	peratur							Pack 1 Y Pack Qty 1 Close ADDR 1 Interval (S) 1 Y Try Connect
Pack Current	-7.00	A	Tce	ell 1 _	32.1	_ ເ	Tcell 2	32.0	0	C	
SOC	91	%									System Status CHARCING OCHARCING OCHC-LINIT-OFF CACi
SOH	100	%	Tce	ell 3 _	32.2	_°C	Tcell 4	31.9	9	C	
RemainCapacity	207190	mAH									
FullCapacity Battery Cycle	30	mAH	1	MOS_T	36.7	_°C	ENV_T	34.1	2	C	Alarm Status None
ell Voltage(mV)											*
MaxVolt	15 34	34	MinVol	it 7	336	65	VoltD	iff 6	i9		Protect Status
 Vcell 1	340	4			Vcell	9	3377				None
Vcell 2	342	7			Vcell	10	3410				Fault Status
Vcell 3	342	2			Vcell	11	3392				None
						12	3380				
Vcell 4	342	0									
Vcell 4 Vcell 5					Vcell Vcell		3416				Switch Control
	339	9				13	3416 3423				CHG Circuit Close Sound Alarm Open
Vcell 5	339	9			Vcell	13 14					

Battery SOC Balancing

CAN Bus Sniffer

- Adafruit Feather M4 CAN
 - Dual CAN bus
- Sniffed CAN-BMS communications
- Plan to modify CAN traffic between BMS and Inverter
 - Copy most of traffic on BMS CAN to Inverter CAN
 - Modify BMS charge current requests

Sniffer Interrupt Driven Packet Processing

static void callBackForStandardSingleFilter (const CANFDMessage & inMessage) {

switch (inMessage.id) {

case 0x305:

// SI read back Voltage / Current / Temp / SOC - 8 bytes of data
// 16 bits, signed int, 2s complement
// V in 0.1V, A in 0.1A, T in 0.1C, SOC in 0.1%

val_unsigned = inMessage.data_s16[0] ; itoa(val_unsigned, si_batt_volts, 10); div10(si_batt_volts);

```
val_signed = inMessage.data_s16[1] ;|
if ( val_signed > 0x7FFF ) val_signed = val_signed - 0x10000;
itoa(val_signed, si_batt_current, 10);
div10(si_batt_current);
```

```
val_signed = inMessage.data_s16[2] ;
if ( val_signed > 0x7FFF ) val_signed = val_signed - 0x10000;
itoa(val_signed, si_batt_temp, 10);
div10(si_batt_temp);
```

```
val_signed = inMessage.data16[3] ;
if (val signed > 0x7FFF ) val signed = val signed - 0x10000;
itoa(val_signed, si_batt_soc, 10);
div10(si batt soc);
// print raw values
Serial.print("0x "); Serial.print(inMessage.id, HEX) ;
Serial.print(", ") ; Serial.print(inMessage.data[0], HEX) ;
Serial.print(", ") ; Serial.print(inMessage.data[1], HEX) ;
Serial.print(", ") ; Serial.print(inMessage.data[2], HEX) ;
Serial.print(", ") ; Serial.print(inMessage.data[3], HEX) ;
Serial.print(", ") ; Serial.print(inMessage.data[4], HEX) ;
Serial.print(", ") : Serial.print(inMessage.data[5], HEX) :
Serial.print(", ") ; Serial.print(inMessage.data[6], HEX) ;
Serial.print(", ") ; Serial.println(inMessage.data[7], HEX) ;
// print interpreted values
snprintf_P(msqString,
           MSG_BUFFER_SIZE,
          PSTR("ID: 0x305, SI_Volts=%s, SI_Current=%s, SI_Temp=%s, SI_SOC=%s%%"),
          si_batt_volts, si_batt_current, si_batt_temp, si_batt_soc);
```

```
Serial.println(msgString);
```

break;

case 0x306:

// SI read back SOH / Charging Proc / SI operation state / SI Error msg / SI batt chg volts // U16 / U8 / U8 / U16 / U16 / U16 / U16

- ACANFD_FeatherM4CAN is a driver for the two CAN modules of the Adafruit Feather M4 CAN microcontroller
- The driver supports many bit rates, as standard 62.5 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s, and 1 Mbit/s.
- Interrupt driven option based on packet id

```
// 0x351:
// Battery charge voltage, charge/discharge current limit - 6 bytes of data
// 16 bits, unsigned int, signed int, signed int
// V in 0.1, A in 0.1
```

case 0x351:

```
val_unsigned = inMessage.data16[0] ;
itoa(val_unsigned, batt_charge_v, 10);
div10(batt_charge_v);
```

```
val_signed = inMessage.data_s16[1] ;
if ( val_signed > 0x7FFF ) val_signed = val_signed - 0x10000;
itoa(val_signed, batt_charge_a, 10);
div10(batt_charge_a);
```

```
val_signed = inMessage.data_s16[2] ;
if (val_signed > 0x7FFF ) val_signed = val_signed - 0x10000;
itoa(val_signed, batt_discharge_a, 10);
div10(batt_discharge_a);
```

```
val_unsigned = inMessage.data16[3] ;
itoa(val_unsigned, batt_discharge_v, 10);
div10(batt_discharge_v);
```

```
snprintf_P(msgString,
```

```
MSG_BUFFER_SIZE,
PSTR("ID: 0x351, ChargeV=%s, ChargeA=%s, DischargeA=%s, DischargeV=%s"),
```

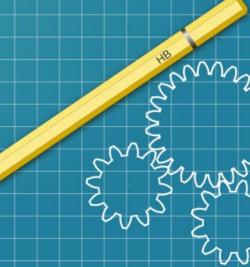
```
batt_charge_v, batt_charge_a, batt_discharge_a, batt_discharge_v);
```

```
Serial.println(msgString);
break;
```

SI Inverter-BMS CAN Traffic

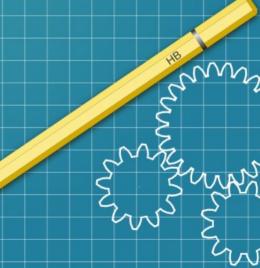
Data from external BMS (Orange mandatory values):

Byte	0	1	2	3	4	5	6	7	
CAN-ID	0	0		1		2		3	
0x351	Battery o volta	0	DC charg limite		DC discharge curren limitation		discharg	e voltage	
0x355	SOC v	alue	SOH	value	HiRe				
0x356	Battery V	/oltage	Battery	Current	Battery Temperature				
0x35A		Ala	rms		Warnings				
0x35B	Ever	nts			600				
0x35E	Manufacturer-Name-ASCII								
0x35F	Bat-Ty	уре	BMS V	ersion	Bat-Co	apacity		rved cturer ID	

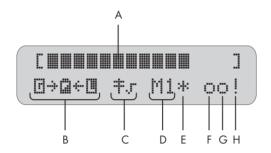

For eventual monitoring purposes Sunny Island sends out every second following process values (<u>read only</u>). Note that battery voltage and battery current are Sunny Island measured values.

Byte	0	1	2	3	4	5	6	7
CAN-ID	0			1	2		3	
0x305	Battery	voltage	Battery	current	Battery te	mperature	SOC battery	
0x306	SOH E	SOH battery		Operating state	active Erro	or Message	Battery Charge Voltage Set-point	

- SI Operates in closed loop
 - BMS asks for charge current
 - SI attempts to provide requested charging current
 - BMS shuts down inverter on fault conditions
- CAN packet sequence about 1Hz


Questions on this section?

Very Useful Sunny Island Functions

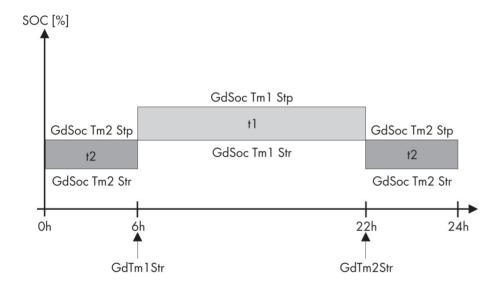

Master Sunny Island Menu

7.1 Display Messages

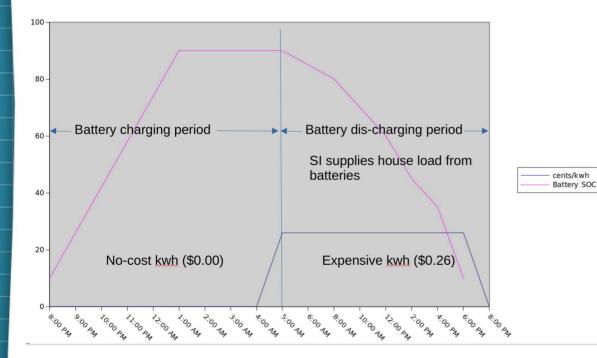
The display of the Sunny Island has two lines, each with 16 characters.

i Meaning of the symbols

Observe the information on the meaning of the individual symbols (see Section 10.6 "Display Messages (Overview)", page 89).

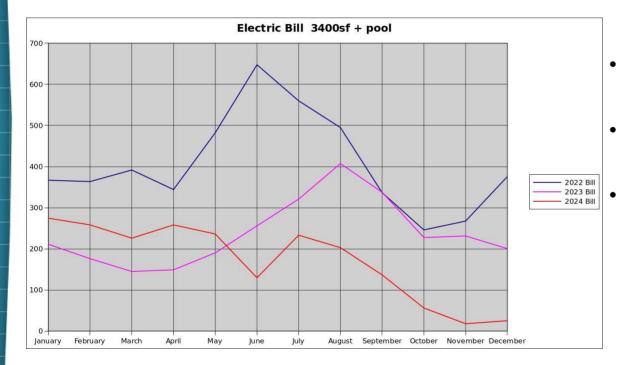

Position	Description
А	Output power/charging power (load status)
В	Direction of energy flow and system status
С	Displays if the Sunny Island loaded parameters for grid operation or parameters for generator operation.
D	Device assignment
E	Status of the external source (asterisk, question mark or exclamation mark)
F	Relay 1 status
G	Relay 2 status
Н	Warning message (exclamation mark)

Home Screen 100# Meters		110#	Inverter Meters —	1	11# 12# 13#	Inverter Total Meters Inverter Device Meters Inverter Slave 1 Meters
		120#	Battery Meters		14# 15#	Inverter Slave2 Meters Inverter Slave3 Meters
		130#	External Meters	1	134#	Generator State Device Meters
		140#	Charge Controller —	1	36#	Slave2 Meters
		150#	Compact Meters		137# 138#	Slave3 Meters CHP Meters
200# Settings		210#	Inverter Settings	S TI	unny	tem can only be selected if Island Charger is installed. nny Island Charger is notUL-
		220#	Battery Settings —	2 2 2 2 2	21# 22# 23# 24# 25# 26#	Battery Protection
		230#	External Settings —	232#	32#	Grid Control Grid Start
		240# 250#	Relay Settings	2	34# 35# 36# 37#	CHP Control
		280#	Password Setting	▶2	41#	Relay General
300# Diagnosis		310#	Inverter Diagnosis —	2	242# 243# 244#	Relay Load Relay Timer Relay Slave 1
		320#	Battery Diagnosis	2	45# 46#	Relay Slave2 Relay Slave3
		330#	External Diagnosis			System Total Diagnosis Inverter Device Diagnosis
400# Failure/Eve	ent 🔶	410# 420# 430#	Failures Current Failure History Event History	9 9	313# 314#	Inverter Slave 1 Diagnosis Inverter Slave 2 Diagnosis Inverter Slave 3 Diagnosis
500# Operation		510#	Operation Inverter		31# 32#	Grid Diagnosis Generator Diagnosis
		520# 540# 550# 560#	Operation Battery Operation Generator Operation MMC Operation Grid			Ū
600# Direct Acce	ess 🔶	Select I Select I	Name: Number:			

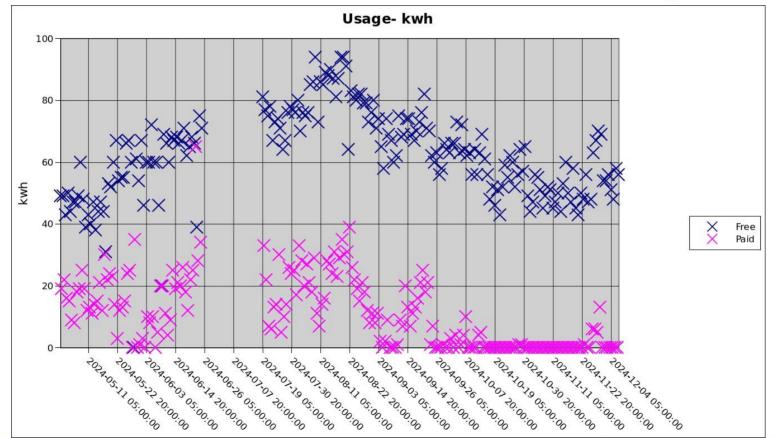

Useful Functions Time of Day SOC Management

•

SI SOC / Time settings



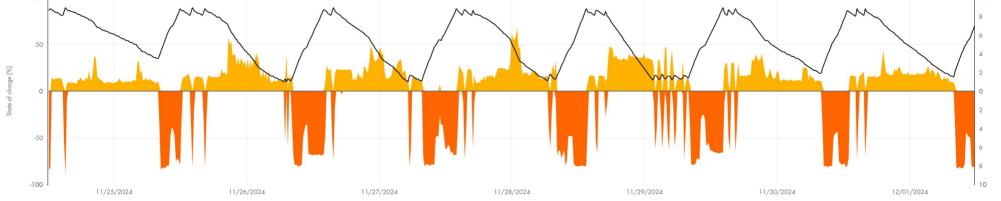
Useful Functions Time-of-Use Plan Savings

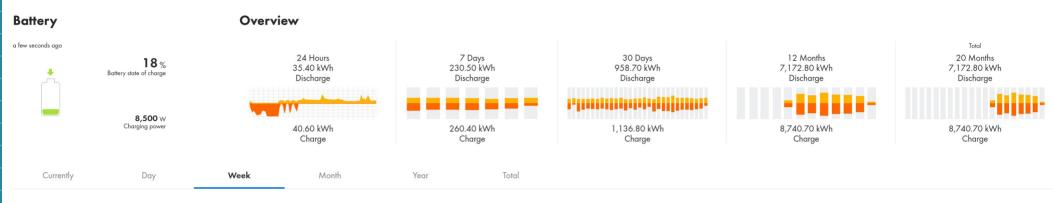

- Grid Load Time Shifting
 - Shift 35 kwh from 8am-5pm to 8pm-5am
- Charge at 9kw starting at 8pm
- Battery charged by 1am or so

Useful Functions Time-of-Use Plan Savings

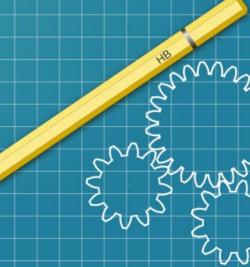
- Started Free Nights and Solar Days May 6 2024
- Saving at least \$200/month over lowest price fixed rate plan
- July 2024 odd month due to home internet failure while in Europe
 - Had neighbor switch house to full time grid

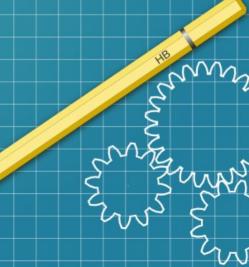
Useful Functions Daily Consumption

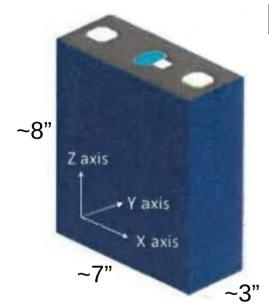

Energy and power - battery

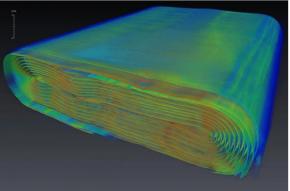


Energy and power - battery


Energy and power - battery

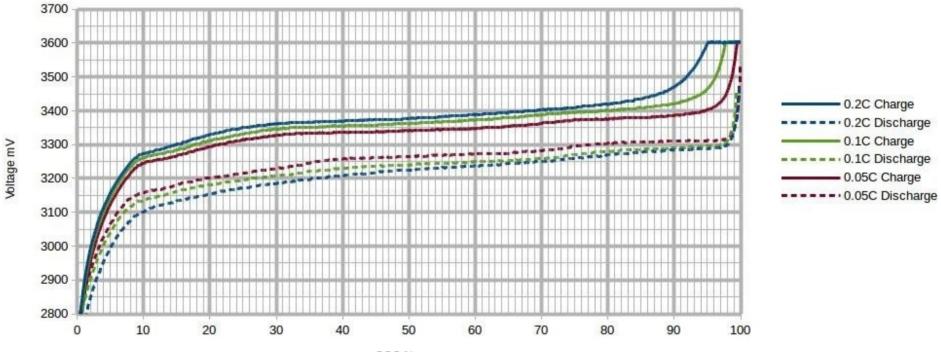

Questions on this section?


Building LFP Modules



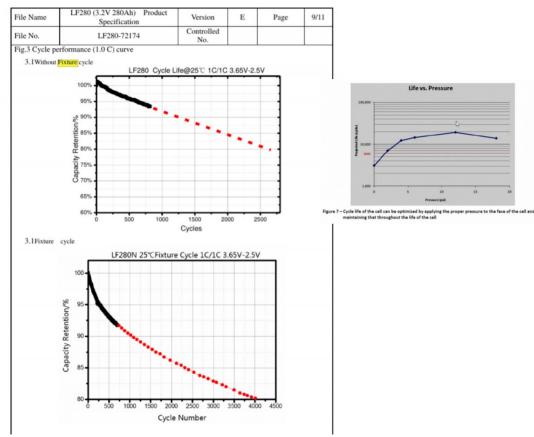
Building your own LFP battery module

- Physical Requirements
 - Cell construction
- Safety Requirements
 - BMS options
- Series/Parallel Options
 - Designation
- Cell balancing
 - Initial + ongoing pack balancing

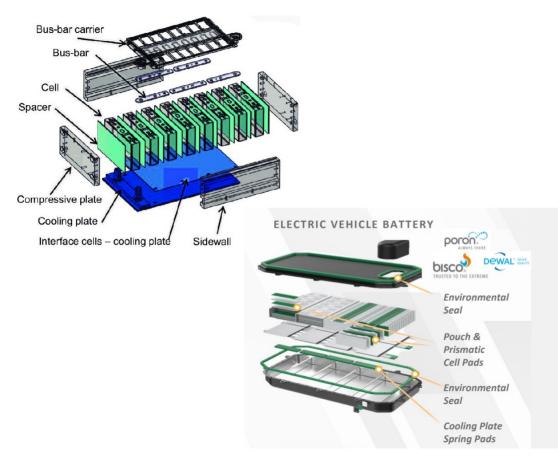


Prismatic Cell Format

- Rectangular format "easier packaging"
- 3.2 Vdc nominal cell voltage
- 100 to 340 amp hrs per cell
- 16 cells in series provides about 51.2Vdc
- Must have battery management system (BMS) for safety
- Aluminum cases must be isolated as they only have a thin polyfilm layer


LFP Charge/Discharge Curves

4 year old Winston 90Ah


SOC %

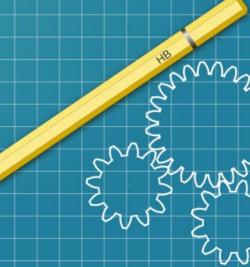
Prismatic Cell Compression Requirements

- Longevity increases dramatically with adjustable cell compression forces
 - From 2500 to 4000 cycles
- Cells expand/contract about 1mm through chg/dischg cycles
 - Creates bus bar stress issues
- Cells expand as they age
- Cells like about 12psi on Y axis
 - Min 50kgf (2 psi)
 - Max 300kgf (12psi)
- That's about 300 kgf (660 lbs) compression over 7x8"
- And it needs to be adaptive

Cell Compression Schemes

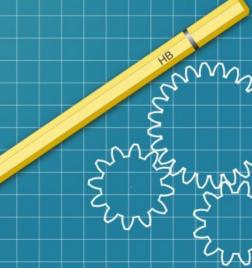
- Need to minimize cell terminal movement with SOC and age while keeping pressure about 12psi
- EV module makers using compression foam between cells
- Spring pads to maintain pressure?
- Rogers Poron EV Extend
 - e.g. 4701-43

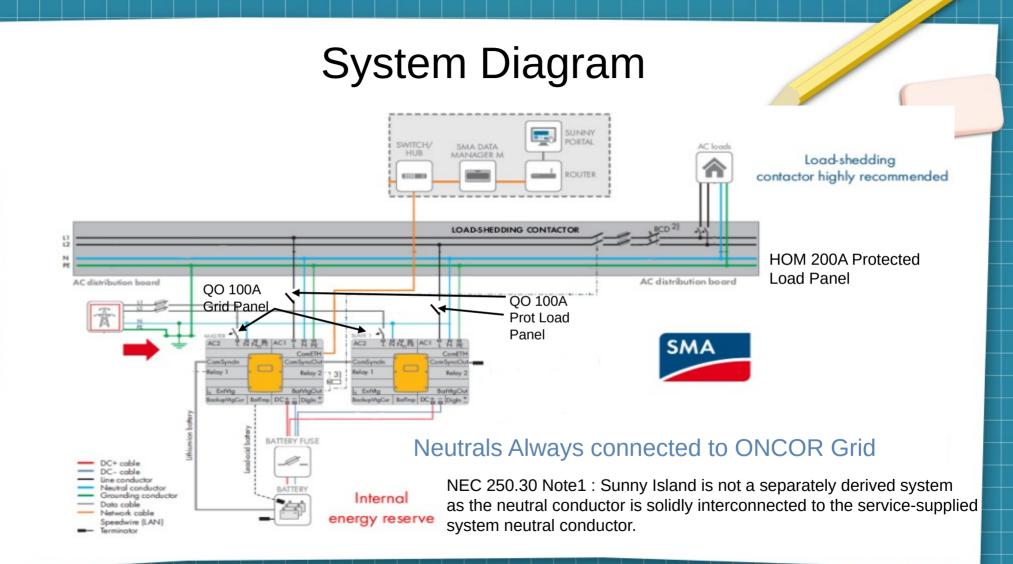
Home Brew Compression Schemes



- Wide variety of schemes
- Trend away from springs by using compression foam
- Or don't worry about cycle life

Questions on this section?




Useful Links

- https://www.ul.com/news/ul-9540-energy-storage-system-ess-requirements-evolving-meet-industry-and-regulatory-needs
- https://diysolarforum.com/
- https://www.solacity.com/how-to-keep-lifepo4-lithium-ion-batteries-happy/

Misc Planning Info

