

Millimeter Wave Measurements

Al Ward W5LUA Microwave Update 2010 October 23, 2010

WWW.NTMS.ORG

Outline

- Measurements from MUD2009
- Things learned since MUD2009
- Evaluation of the WA1MBA 78 GHz LNAs
- Sun and Moon Measurements on 78 GHz
- WA1MBA Part II Progress on the LNAs

Swept frequency determined by sweeper – HPIB controlled or sweep input Detect modulated RF signals with detectors connected to A, B, or C ports Use 11664A and 85025A detectors Responds well to modulated (27.778 kHz) RF signals that are multiplied to get onto "higher" frequencies Plot to KE5FX 7470 emulator with Prologix GPIB to USB adapter

Scalar Analyzer Set Up

40 to 60 GHz Test Setup

WWW.NTMS.ORG

WWW.NTMS.ORG

8757 40 to 60 GHz S21 & S11

WWW.NTMS.O<u>RG</u>

W5LUA 47 GHz W2IMU Feed for EME

WWW.NTMS.ORG

W5HN

8

W0EOM SMT S90-1240 Amplifier RF Drive level = -30 dBm

W5HN

North

Texas NTMS

Microwave Societv

W0EOM Anritsu 52956 Shaped Attenuator 156

WWW.NTMS.ORG

W5HN

10

W5LUA Wiltron 3 dB Attenuator

Avago AMMC-6241

W5HN

WWW.NTMS.ORG

12

WR-15 detector swept from 65 to 85 GHz

W5HN

WWW.NTMS.ORG

14

WR-15 30 dB Attenuator

CH1: A −M − 30.13 dB 10.0 dB⁄ REF − .00 dB

WA5VJB WR-8 (90 -140 GHz)

1

W5HN

WWW.NTMS.ORG

RF Input Level for LNA Tests

WA1MBA LNA#1

CH1:A −M + 26.40 dB 20.0 dB⁄ REF − .00 dB

W5HN

WWW.NTMS.ORG

WA1MBA LNA#4

CH1: A -M + 17.11 dB 20.0 dB/ REF - .00 dB

WWW.NTMS.ORG

WA1MBA LNA #5

W5HN

WWW.NTMS.ORG

20

WA1MBA LNA #6

CH1: A −M + 11.99 dB 20.0 dB⁄ REF − .00 dB Forgot to reset curser, s/b around 16 dB

DSB NF Measurements performed at MUD 2009

NF (dB) Gain (dB)

78 GHz	WA1MBA	_NA#4 2 Stage CHA1077		7.75	19.8
	VE4MA	Converter	Mixer/IF Amplifier	14.00	12.2
	W5LUA	Converter	Isolator/BPF/Mixer/IF Amplifier	20.20	15

North Texas NTMS Microwave Society

Although DSB noise figure measurements provide an average noise figure at LO +/-IF, it was felt that with all the low frequency gain of the WA1MBA amplifier that some sort of filtering was required to keep from saturating the mixer. This was accidentally verified on the bench when the LO was inadvertently turned off and I was still able to make a noise figure measurement! But.... where to find a filter?

OE9PMJ 47 GHz BPF Retuned to 78 GHz

CH1: A -M - 1.69 dB 20.0 dB/ REF - .00 dB

Approximately 20 dB image rejection at 77.328 GHz

WWW.NTMS.ORG

OE9PMJ 47 GHz BPF Retuned to 78 GHz with WR-8 in series

The WR-8 piece of waveguide provides additional attenuation below 73 GHz

WWW.NTMS.ORG

W5HN

North

Texas NTMS

Microwave Society

Testing the OE9PMJ 47 GHz Filter on 78 GHz

Hughes Test Box with X2 doubler to 78 GHz

W5HN

WWW.NTMS.ORG

Barry's New Baby – A 75 to 100 GHz Noise Source!

North Texas NTMS Microwave Society

WWW.NTMS.ORG

WA1MBA 78 GHz LNAs using VE4MA WR-10 NoiseCom Noise Source

LNA #	NF	NF	Gain	Gain
	w/o	w/tuner	w/o	w/tuner
	tuner		tuner	
4	10.6 dB	8.5 dB	14.6 dB	17.3 dB
5	11.8 dB	7.7 dB	14.9 dB	19.1 dB
6	11.5 dB	6.9 dB	9.7 dB	14.5 dB

It seems like we are going no where with these noise figures – something must be wrong!

WWW.NTMS.ORG

W5HN

28

WA1MBA 78 GHz LNA#6 with W/G Tuner measured at W5LUA

The indicated NF is measured with the input waveguide tuner in place. Without the tuner the Gain is 9.7 dB and the NF is 11.5 dB. Gain can be increased above 14.5 dB with the addition of a waveguide tuner at the output of the LNA

WA1MBA 78 GHz LNA#5 with W/G Tuner

W5HN

3 0-80 tapped holes on top and 2 on bottom, ones on bottom are offset by .070" from top

30

At this point my system noise figure was pretty close to 8.5 dB but I still decided it was time to look for sun and moon noise

GR-1216 & GR-1236 IF Amplifiers

These meters provide a 30 MHz IF amplifier with up to several MHz of bandwidth which makes it easy to measure sun and moon noise – they can be easily retuned for 28 MHz

Measurements

- Sun noise over cold sky
- Moon noise over cold sky
- Ground to cold sky or
- 50Ω to cold sky

INV LOG ((dB)/10) = $\frac{\text{Tr} + \text{To}}{\text{Tr} + \text{Tant}}$

Tr = 290 log (NF-1) where NF is noise factor (ratio) and NOT noise figure (dB) Tr = Noise temperature of receiver (Kelvin)

To = temp of 50Ω load (Kelvin)

Tant in Kelvin is a measure of how quiet your antenna is on receive which takes into account feed efficiency and spillover and atmospheric absorption – lower the better

WWW.NTMS.ORG

2.4 m Fiberglass Offset Fed Dish with WR-10 Std Gain Horn

NF = 8.5 dB (1763K)

Sun Noise / cold sky = 1.6 to 1.8 dB w / WR-10 Feedhorn 1.2 dB w / WR-15 Feedhorn 1.2 dB w / small WR-15 Feedhorn 1.0 dB w / W2IMU Feedhorn SFI = 75

Moon Noise / cold sky = 0.15 dB w / WR-10 Horn

 50Ω / cold sky = 0.35 dB w / WR-10 Horn, NF = 8.5 dB, Ta = 131K

Theoretical 3 dB BW = .11 degree

WWW.NTMS.ORG

1 m Winegard Offset Fed Dish with W2IMU Feedhorn built by WA5JAT

NF = 8.5 dB (1763K)

Sun Noise / cold sky = 3.8 dB w / W2IMU Feedhorn 1 dB w / WR-10 Feedhorn SFI = 82, 1, 1

Moon Noise / cold sky = 0.2 dB

 50Ω / cold sky = 0.3 dB, NF = 8.5 dB, Ta = 153 K

Not Optimized Yet!

Theoretical 3 dB BW = .3 degree & G~ 56 dBi

Lessons Learned

- This is not going to be easy!
- An isolator on the noise source is a must to reduce measurement error – nothing really new here...we knew that from our low frequency work over the years that an isolator or a 10 dB pad would help improve measurement accuracy
- It appears that the LNA requires an input tuner and maybe even an output tuner – not a big deal, a few screws in a piece of WR-15 and we are ready for tuning.....
- Returned a couple of units to Tom WA1MBA for verification on noise figure.....standing by for a report...

It appears that Tom has performed some magic on the LNA and the gain at 78.2 GHz has gone from 12 dB to 29 dB without the need for a tuner!

Testing LNA #5 8/29/2010

50 GHz 2.4mm detector with transitions and WR-15 isolator – my nice WR-15 detector pooped out on me

North Texas NTMS Microwave Society

78 GHz Converter

WWW.NTMS.ORG

78 GHz XVTR with new LNA !

New LNA#6 w/BPF and WR-8

CH1:A −M + 26.03 dB 20.0 dB⁄ REF − .00 dB

To the Moon, Alice!

 If these noise figure readings are real, then we must be able to verify the measurements by again using the sun and moon and noise sources

VK3UM Software

Two Station EME Receiver Performance Source Positions Planets	x 10 Multiplier	Note Pad Feed Type X ref Version History (Help About Exit
Default Diam Mesh Spacing Sys Bensibility 78.000 GHz 305.46 dB 200 K • 120 Hz • Solid Dish -150 dBm Frequency Path Loss T Sky PocBW • • • • •	Echo SN	Yagi Array Number of Yagis E 38.3 * Array Oain Single Yagi Oain in dBi Image: Compared to the second se
Your last sta data record has been loaded. 0.00 dB Cris - ground> 0.0 7K 358.2 % 20 % 0.7K 00 0.00 dB 350 dB 33.0 dB 2.0 dB 1.0 dB 28 % 0 % Solar Flux LNA Loss LNA Mr LNA Gain Coax Loss Fix Mr Feedbrough	-11 d8	Parabolic Reflector Feed Type W22MU dual-mode Elinear Pol Circular Pol Diameter Size f//D Efficiency Beam Width Gain Dish Gain 1.00 m + Metric 0.55 + 65% 0.27* 427397 54.16 dBd 56.31 dBi 256.9 Lambda 54.16 dBd 56.31 dBi
TxA Output Power Transmission Loss Power at Feed • • • • • • 80 Warts 19.03 dBW • 0.3 dB 75 Warts 18.73 dBW 31.906.380 • • • • • • • •	1 15 dB Moon Y D W EJRP	Home Station Y Factor Calc Noise Flux Quiet Flux Dystem Tk Noise Source Oxiet Source 250 % 200 % 587.4 % O Sagittarius O Termination O Aquatius Point Source Y Factor -3.07 dB
Receiver Notes Temperature 290 °K 17 °C Syst 17 °S67.4 °K = 4.01 °C Dx Station as received at Home Station 3.8 dB Moon Distance Home Station as received at Dx Station 3.8 dB Peripee	Apopee	Control of the calculation Control of the calculation
CB (Dx Station) Default Diam Mesh Spacing Dys Sensibility 76.000 GHz 305.46 dB 200 K + 120 Hz + Solid Diah -150.0 dBm	Echo 50N →	Yagi Array Number of Yagis E 11.6 * Array Oain Single Yagi Gain in dBl • 4 • Beam Width 20.65 dBd 23.00 dBi 17.30 dBi • 4 • H 11.6 * 20.65 dBd 23.00 dBi
GIT -40.0 dB -40.0 dB	-31 dB -31 dB -3 80 dB -3	Parabolic Reflector Feed Type W2lMU dual-mode Linear Pol Circular Pol Diameter Bize f//D Efficiency Beam Width Oain Dish Gain 1.00 m w Metric 0.55 w 80% 0.27* \$31815 \$5.11 dBd \$7.26 dBi 260 2 Lambda 0.27* \$31815 \$5.11 dBd \$7.26 dBi
x x	1.38 dB Effect Moon Y WEIRP Moo	Clive Aperture Beam Width Ratio Note: Both Moon and Sun correction factors are supplied to Home and Dir Station calculations. Pt Serve Doto 0.50 M ⁴ 2.07 calculations. Image: Calculations.
Occurred Temperature Occurred Temperature Sys T*K 587.5 *K = 4.81 c Packeter Moles Temperature 290 *K 17 *C Sys T*K 587.5 *K = 4.81 c System Moles Temperature 290 *K 17 *C Sys T*K 587.5 *K = 4.81 c System Moles Temperature 290 *K 17 *C Sys T*K 587.5 *K = 4.81 c System Moles Temperature 0 System Moles Temperature So 50 MHz 432 MHz 0 10.368 GHz 0 144 MHz 900 MHz 0 3456 MHz 0 240 48 Ghz 0 406 MPz 222 MHz 0 1296 MHz 0 5760 MHz 0 47088 Ghz 0 2295 MHz	dB Moo	3 05 x 4 84 dB 2 89 x 4 61 dB 727.64 Image: Constant of the state

W5HN

WWW.NTMS.ORG

1 m Winegard Offset Fed Dish with W2IMU Feedhorn built by WA5JAT

System NF = 3.5 dB (359K)

Sun Noise / cold sky = 7.2 dB w / W2IMU Feedhorn SFI = 87, 3, 0

Moon Noise / cold sky = 0.75 dB

 50Ω / cold sky = 1.2 dB, NF = 3.5 dB, Ta = 133 K

Feed position still not optimized!

Dew point is quite a factor in the measurements = moisture and oxygen absorption!

WWW.NTMS.ORG

78 GHz W2IMU Feedhorn built by WA5JAT

W2IMU Dual Mode "Scaled" Feed Dimensions

WWW.NTMS.ORG

W5HN

46

Noise Figure Comparison of ATF-36077[™] 1.3 GHz LNA from Ap Note 1128 as tested on 3 different NF Test Setups

Noise Figure Comparison of ATF-36077 1.3 GHz LNA from Ap Note 1128 as tested on 3 different NF Test Setups

Equipment	NF of NFM – cal'ed out	BW	NF (dB)	Gain (dB)
8970B	6 dB	4 MHz	0.35	15.8
8973A	5.5 dB	4 MHz	0.43	15.9
		100 kHz	0.44	16.0
E4440*	7 to 8 dB up to 3 GHz	4 MHz	0.37	15.8
Spec Anal	With extra internal preamp	1 MHz	0.37	15.9

* With Noise Figure Personality Module

All measured with the same 346A noise source. All meters corrected for noise source Tcold. Interesting that the E4440 spectrum analyzer with noise figure personality module gives numbers closer to the old standard 8970 that the 8973 does

- Any Questions?
- My presentation will be available at <u>www.ntms.org</u> after the conference.
- Thank You

W5HN

• See you on the moon!