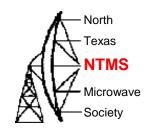
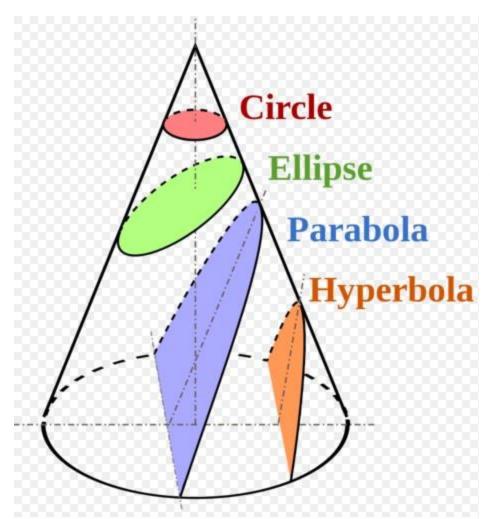


More Fun with Off-set Dish Antennas

by Bob Gormley WA5YWC

Parabolic Review

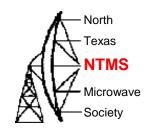

This presentation will focus on offset dish antennas for use on the 10 GHz band.

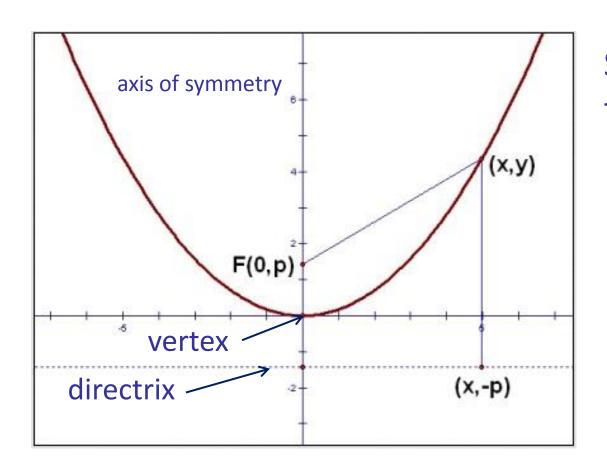

Let's think back to our Algebra 2 class. I know it's been a long time for most of us.

Stop your moaning! This might be fun.

Let's start with some basics...

Conic Sections

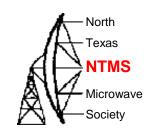


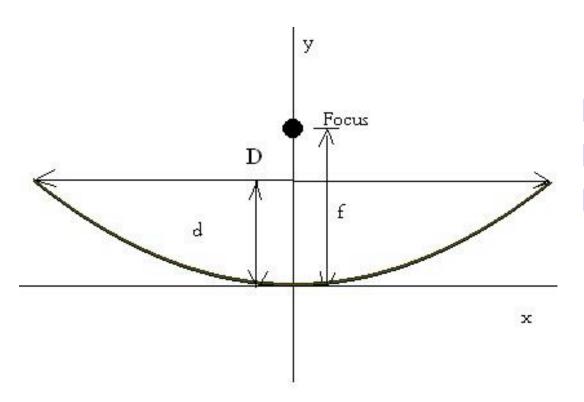


Remember these?

Since were interested in dish antennas, lets focus on the Parabola.

The Parabola

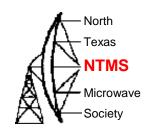




Simplest form:

$$y = \frac{1}{4p}x^2$$

Prime Focus Parabolic Dish Antenna

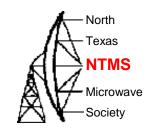


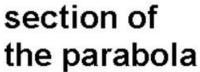
Find the focus:
Measure Diameter
Measure depth

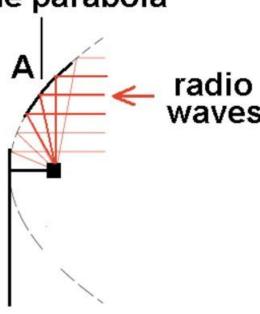
$$f = \frac{D^2}{16d}$$

Offset Dish Antennas

Single LNB feed

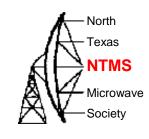

Oblong Shaped




Multiple LNB feeds

Both antennas work on 10 GHz

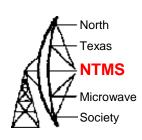
Offset Dish is Still a Parabola



The offset dish antenna is nothing more than a section of a full parabola or a prime focus dish antenna.

The beauty of the offset dish antenna is the focus is outside the reflecting surface.

Surplus Offset Dish Antennas

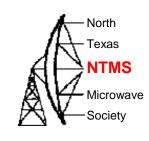


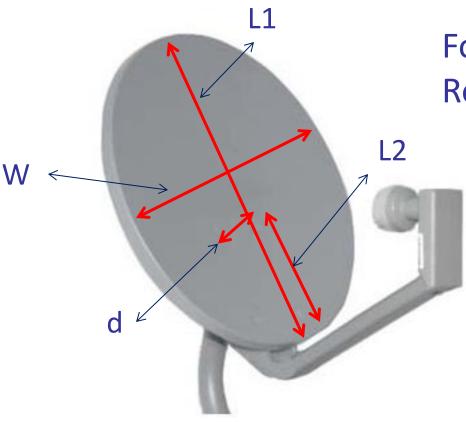
Every time a satellite TV company installs a dish antenna on a home with an existing dish antenna, that antenna is discarded and a new antenna is installed.

These antennas are available for free! Most of the time, they end up in the landfill or metal salvage yards.

W5HN

You Find an Offset Dish Antenna What next?




The first question is: will it work on 10 GHz?

YES it will!

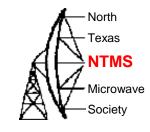
Where's the focus and what kind of feed do I need?

Measuring for Focus on an Oval Dish

Four Measurements Required

L1: Length

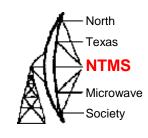
W: Width


d: Depth

L2: Length to bottom rim

from depth

(Assume LNB not present)


Offset Dish Calculator

puts		Г		, ,	
Enter Frequency		MHz	. /		
Diameter of large axis of	dish	mm	K	//	
Diameter of small axis of	dish	mm			
Depth of dish at deepest	pt	mm		//	
Distance of deepest pt fr		mm			
bottom edge along large				//	
Units (all entries)	C inches C	mm			
Calc	culate	1			
	Jailaco	-			
<u>S</u> ave	to File		11		
E	<u>x</u> it				
	878086				
s program does calculatio				routine uses a curve-fitti	ing
orithm to find the focal po	40 80 8778 2	5 13. 21			
quired input data are the epest point in the reflecto					fithe
e WiFi calculations and o ul Wade, you can find the	e program here:	ed directly from t	he source code of t	the hdl_ant program writte	en t
o://www.w1ghz.org/10g.	/software.htm				
ere is a link to the progran	n on the "About" fo	orm			

http://www.electronicecircuits.com/electronic-software/parabola-calculator-for-satellite-dish-antenna-design

Do All Offset Dishes Work with the Calculator?

The offset dish calculator works with measurements from an oval offset dish.

If you have an oblong offset dish, the calculator will not work if the width is greater than the length.

But, the oblong dish will work if you take a few extra steps to obtain new measurements.

Measuring an Oblong Offset Dish

North
Texas
NTMS
Microwave
Society

Lay dish on flat surface and level it in both length and width plane. Add water until it spills over the top and bottom edges. Carefully mark new diameter with pencil.

Measurement Tips

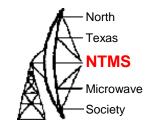
Use a straight edge such as aluminum angle stock to make Length measurement. Mark dish edges on straight edge.

Use a string and tape to measure the new Width.
Mark string with marker pen on edges. Remove string and measure with tape.

Microwave

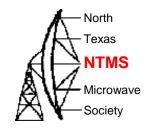
W5HN

Finding Lowest Spot on Dish

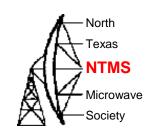

Roll a big marble or ball bearing around dish to find the deepest spot. It may take numerous attempts to determine exact spot due to dish irregularities. Mark spot with a pencil.

WWW.NTMS.ORG

Microwave


Measure Depth

Use straight edge with Length marks on each end. Tape a toothpick to straight edge and lower it to the depth pencil mark. Mark straight edge at toothpick. Remove straight edge and measure length of toothpick. Measure from toothpick mark to bottom edge mark to obtain Length "L2".



Apply Measurements to Offset Dish Calculator

puts					
Enter Frequency	10368.1	MHz		1	
Diameter of large axis of dish	582	mm	1	1	//
Diameter of small axis of dish	572	mm	1	V	
Depth of dish at deepest pt	37.78	mm	/ / /	11	7.30 min
Distance of deepest pt from bottom edge along large axis	280	mm		X	657.30 mm
Units (all entries)	inches 🕝	mm	레		
<u>C</u> alculate			4		500.37 mm
<u>S</u> ave to File			l IIV		
E <u>x</u> it				//	15.6 degrees
e Focal Length is 500.37 mm. is offset reflector is a section of ge of the offset reflector. The ful e focal point of the dish is 500.3 the reflector.	l parabola has	an f/D = 0.4	15, which de	etermines critica	ality of focal length.
operation with the main beam of the large axis is 74.36 degrees			d at the bott	om, the dish mu	ist be tilted forward s
mination angle for feed = 58.50 h a 3 dB beamwidth of 33.82 de 3.	grees is need	ea, equivalei			

Dish500 Measurements with and without Water

Dry Measurements

L1: 554 mm

W: 514 mm

d: 49.75 mm

L2: 255 mm

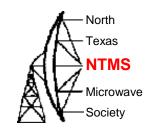
Focal point: 300.99 mm

Top string: 517.11 mm

Water Measurements

L1: 535 mm

W: 514 mm

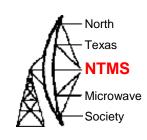

d: 46.5 mm

L2: 244 mm

Focal point: 306.32 mm

Top string: 507.04 mm

String and Knot Technique to Find Focal Point

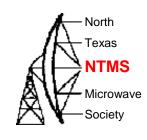


The calculator shows two lengths in the dish picture. One from the top edge to the focus and one from the bottom edge to the focus.

Take a length of string and tie a knot in the middle. From the knot, measure the long distance and mark the string. Then mark the other end of string with the short distance.

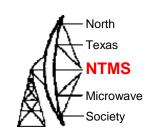
Tape the string to the dish as shown in picture and pull knot to find focal point.

Optical Method to Find the Focus



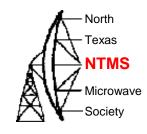
Put reflective tape on dish.

The focal point is very obvious.


Feeding an Offset Dish Antenna

There are a couple of good methods to feed an offset dish antenna. The original LNB can be modified to work at 10 GHz by removing the PCB on the back of the unit and drilling out the circular waveguide to 0.75 inches. Installing a back short and a SMA connector works for many operators.

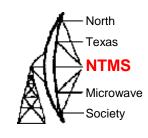
Another method is to fabricate a horn antenna. This has been described in detail by Paul Wade, W1GHZ in his On-line Antenna Handbook. Paul's on-line calculator called HDL-ANT generates a horn template for various common rectangular waveguides.


Using HDL-ANT in a Windows Environment

Paul Wade, W1GHZ On-line Antenna Book describes a calculator call HDL-ANT. This program is a dos based program that works with non-Windows based operating systems, such as XP. When downloaded and extracted, you will have a program called hdl-3b4.

If you are using an operating system such as Vista and Windows 7, you will need a dos emulator to use hdl-3b4.

HDL_ANT Calculator


Go to http://www.w1ghz.org/antbook/contents.htm .

Chapters 4 and 6 provides a great explanation of dish antennas.

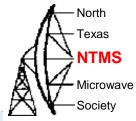
Scroll down to "Software Page"

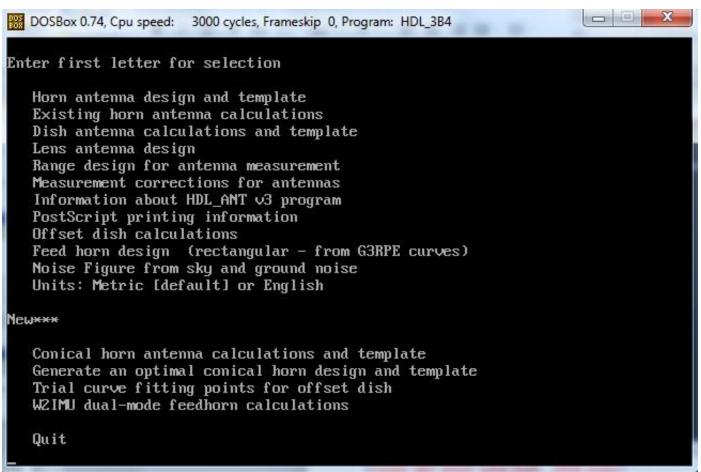
Download HDL_ANT to your hard drive and extract hdl_3b4 to a file of your choice.

A dos Emulator for Windows Operating Systems

A free dos emulator called DOSBox is available for download at: http://www.dosbox.com/. Save to your desktop.

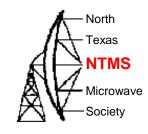
This tutorial will save you a lot of time figuring it out.

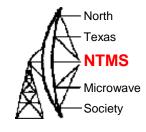

Launch DOSBox 0.74 from your desktop.


Z:\> (type the following) mount c c:\your file\hdl_3b4

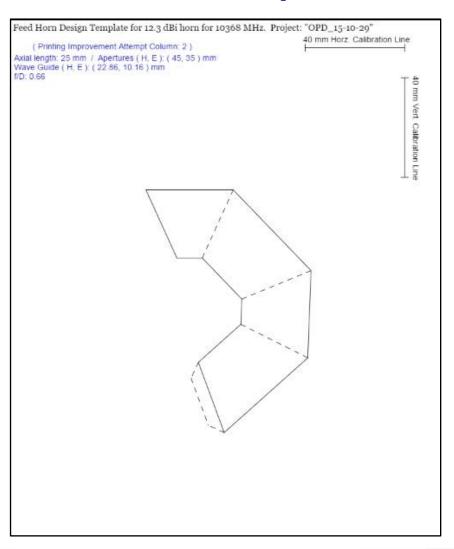
Drive c is mounted as local directory c:\your file\hdl_3b4

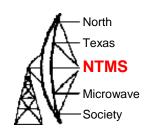
Z:\> (type) c:\
(type dir and see hdl_3b4.exe)
(type) hdl_3b4 to launch program

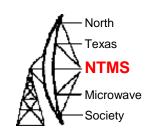

DOSBox and HDL_3b4

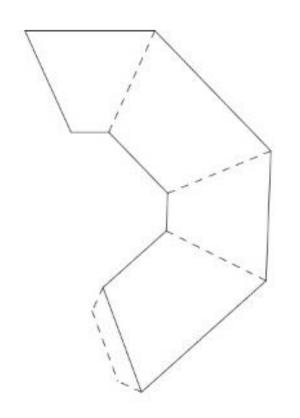

Type "H" to design horn antenna

New Dish Calculator (coming soon)

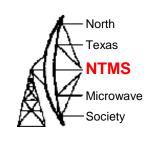

Enter Offset Parabolic Dish Parameters		
Project Name: OPD_15	10-18	
Frequenc	y: 10368.1	MHz
Dish Length along Large Axi	s: 582	mm
Dish Length along Small Axi	s: 572	mm
Depth of dish at deepest poir	it: 37.78	mm
Distance of deepest point from bottom edge along large axi	s: 280	mm
Calculate Exit Clear & Restart Load Test Parms Xfer Results	to Feed Horn C	alculator
f/D to be illuminated (Feed Horn Design):	0.93	7
Focal Length:		mm
Equivalent Full Dish Diameter:	1120.88	mm
Whose vertex is at the bottom edge of the of	fset reflector:	
Equivalent Full Dish f/D:	0.45	
OPD Focal Point - Distance from Bottom Edge of Reflector:	500.37	mm
OPD Focal Point - Distance from Top Edge of Reflector:	657.3	mm
OPD Tilt Angle above Horizon:	74.4	degrees
Feed Illumination Angle - Large Axis:	58.5	degrees
	59.9	degrees
Feed Illumination Angle - Small Axis:	00.0	
Feed Illumination Angle - Small Axis: Feed Horn 3dB Beam Width:	33.8	degrees
		degrees dBi


Horn Calculation


North Texas				Feed Ho	rn Design
Microwave Society					Calculator
Notice: The software used in all NTIV created by W1GHZ (ex- N1BWT) and http://www.w1ghz.org/. The officers generosity of W1GHZ in allowing all H	nis team of er of NTMS and	ngineers and d the users of	presented in the W1 this web site sincer	GHZ web site	at
Enter Feed Horn Design Para	meters		NAME OF TAXABLE PARTY.		
		Proj	ect Name: FH_15	The second secon	
			Frequency:	10368.1	MHz
		2_90 ▼			
	H-plane in	iside dimens	ion of waveguide:	22.86	mm
	E-plane in		ion of waveguide:	10.16	mm
		f/D	to be illuminated:	.93	
Enter Desired Dimensions of Horn &	Click Con	tinue:			
Calculate	Exit Cle	ear & Restart	Load Test Parn	ns l	
Results					
	Calculated	Improvement A		tempts	
	P		2	3	4
H-Aperture (mm):	60.3893	54			
E-Aperture (mm):		38			
Axial Length (mm):		71		1	
Simple Gain of Horn (dBi):	13.6	12.6			
Improved Gain of Horn (dBi):		13.7			
H-Plane Phase Center (λ):	0.358	0.253			
E-Plane Phase Center (λ):	0.188	0.131			


Horn Template

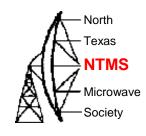
Horn Antenna Template from HDL_3b4



Your local craft store such as Hobby Lobby is your friend. The craft stores and maybe the local builder box stores will carry K&S Metals sheets of tin, brass or copper.

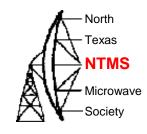
Cut out template and tape to sheet metal. Cut with scissors. Fold on dotted lines.

A Horn Antenna for the Offset Dish



Solder folded tin horn to PCB waveguide flange.

Double-sided PCB material for waveguide flange.


Mounting a Horn Feed

One method of mounting a horn feed using a waveguide transition.

Find Them and Use Them

Offset dish antennas are everywhere. When you see a discarded dish, grab it!