

HB100 Microwave Doppler Sensor

N5BRG

October 2, 2021 Virtual Meeting

Ebay Find

HB100 Microwave Motion Sensor 10.525GHz Doppler Radar Detector for Arduino And

Condition: New

Quantity: 1

More than 10 available / 6 sold

Price: C \$3.56

Approximately US \$2.81

Add to cart

♡ Add to Watchlist

A seller you've bought from

Free shipping

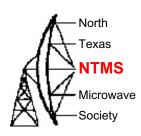
30-day returns

Shipping: FREE Economy Shipping from Greater China to

worldwide | See details

International shipment of items may be subject to customs processing and additional charges.

Located in: shanghai, China

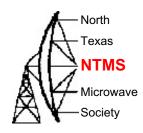

Delivery:

Estimated between Tue. Nov. 30 and Tue. Jan. 25

This item has an extended handling time and a delivery estimate greater than 38 business days. Please allow additional time if international delivery is subject to customs processing.

Returns: 30 days, buyer pays return shipping | See details

User Comment on Detection Range from Amazon



Question: What is the detection range of this sensor in terms of meters or feet?

Answer:

Depends on the size and speed of your target. With an added microwave horn (made from aluminum foil), a preamp circuit (1 opamp), and a Arduino-type controller (Teensy T3.2) doing a FFT on the signal, I was able to detect a person walking at 2.2 mph out to 80 feet. I saw a pickup truck about 500 feet away (big flat metal things kick back a big radar signal). There's more info online, search for: HB100 teensy doppler radar processing see less By Amazon Customer on August 8, 2017

Ebay Discription

Description

Description:

100% brand new and high quality Material: Electrical components

Color: See pictures

Features:

1. Type: Microwave Sensor.

2. Chip: HB100.

Frequency: 10.525GHz.
 Voltage: DC 5V±0.25V.

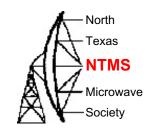
5. Current: 40mA.

7. Application: Automatic door startup, Car, House intrusion alarm, Collision warning.

Traffic monitoring.

Note:

Please pay attention to the Voltage/Current/Power of your own devices. To ensure product safety, check whether this item is compliant with your own devices before you buy it!


Size: See the picture No retail package Quantity: 1Pc

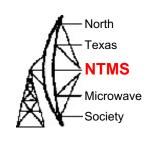
Note: Due to the difference between different monitors, the picture may not reflect the actual color of the item. Thank you!!

Package includes:

1Pc x HD100 Module

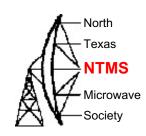
Maybe these folks are the original designers.

ST Engineering Electronics Ltd ST Engineering Hub, 1 Ang Mo Kio Electronics Park Road #06-02 Singapore 567710

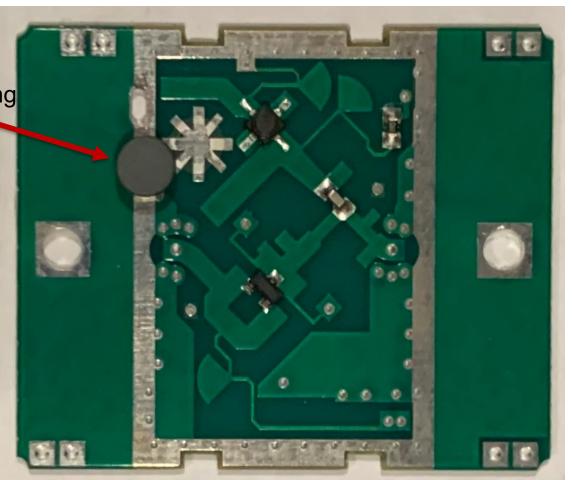

Tel: (+65) 6521 7948 / (+65) 6521 7933

Fax: (+65) 6521 7801

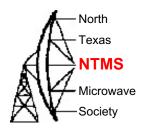
Email: info@agilsense.com



Ap Note By ST Electronics

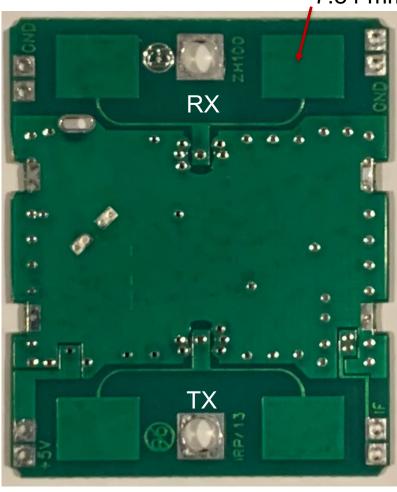

- http://www.limpkin.fr/public/HB100/HB100
 Microwave Sensor Application Note.pdf
- Search for "HB100 teensy doppler radar processing" to learn more.

Board Top View Can Removed



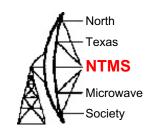
Dielectric Tunning Element not squed here.

Should be on Star burst.


Patch Antennas

← 19.8 mm →

7.84 mm X 6.08 mm

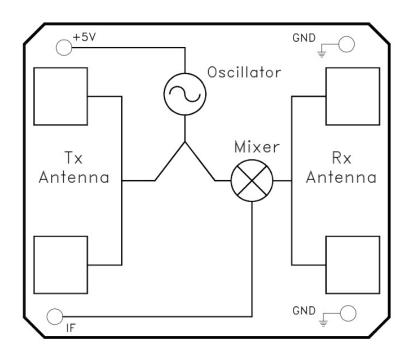
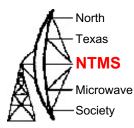
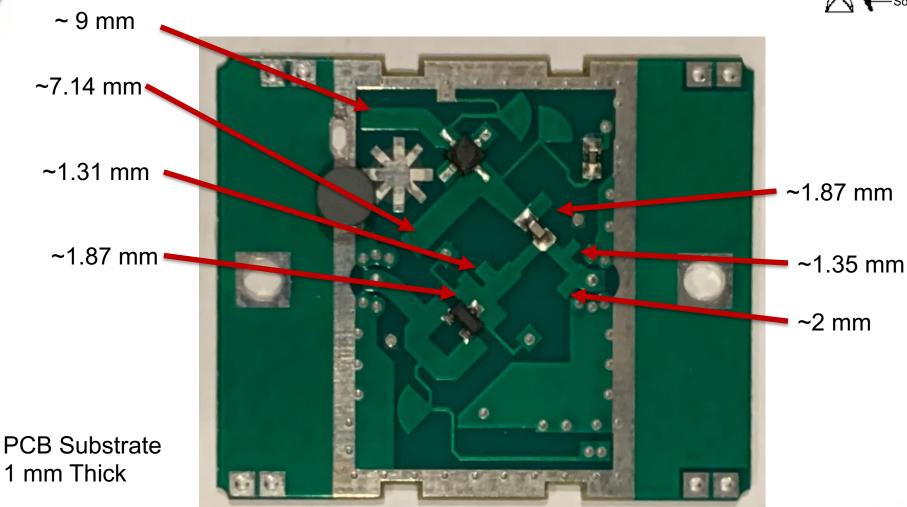

GND

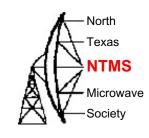
← 35.6 mm →

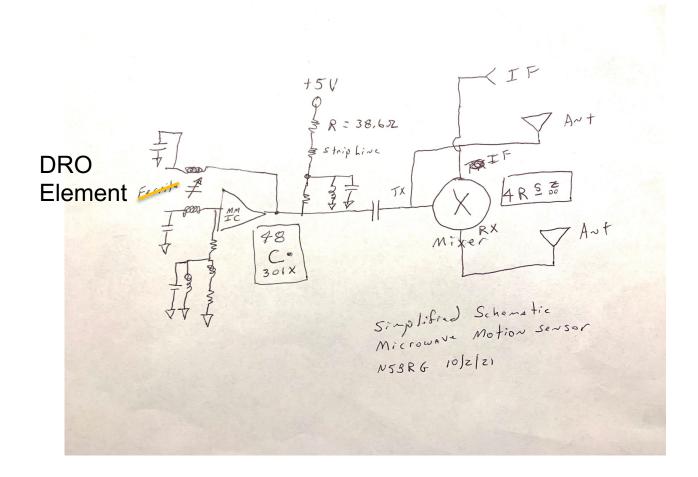
+5VDC

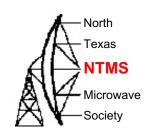
IF OUT

Block Diagram

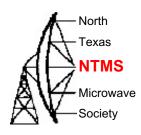





Diagram A: Block Diagram

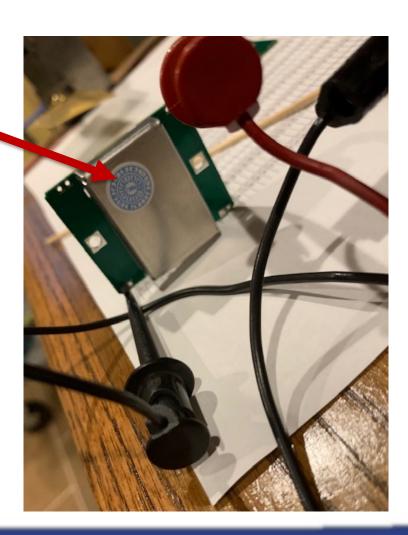

Stub Lengths



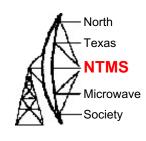
Simplified Schematic

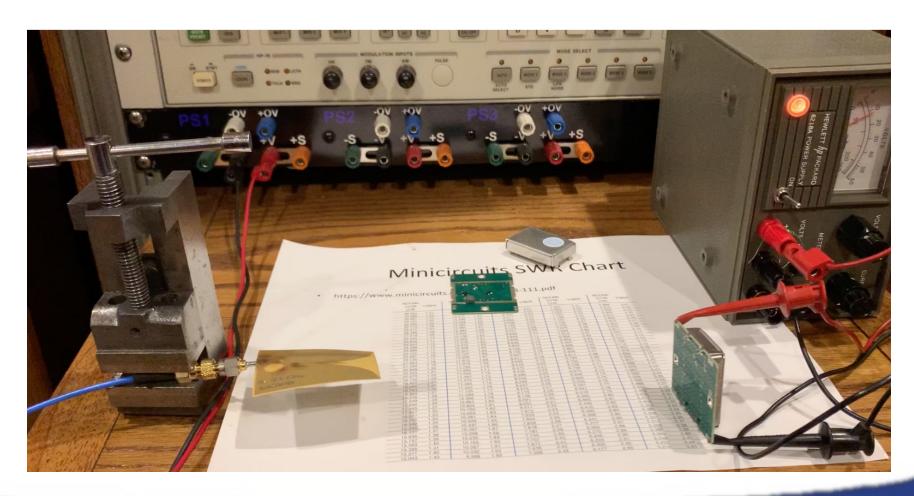


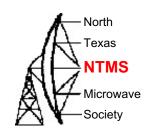
DRO References

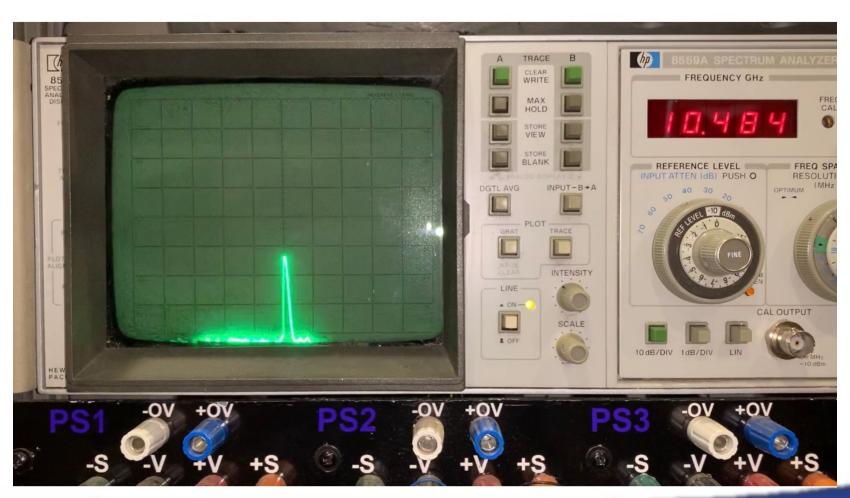


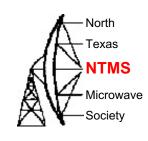
- https://gedlm.com/DRO/
 - Good reference on DRO oscillators
- https://accelconf.web.cern.ch/p99/PAPER S/MOP47.PDF


Can View

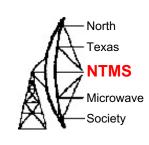

DRO Adjustment Hole here.


Test Setup


14

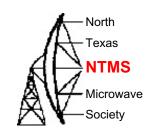

TX Signal

15

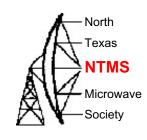


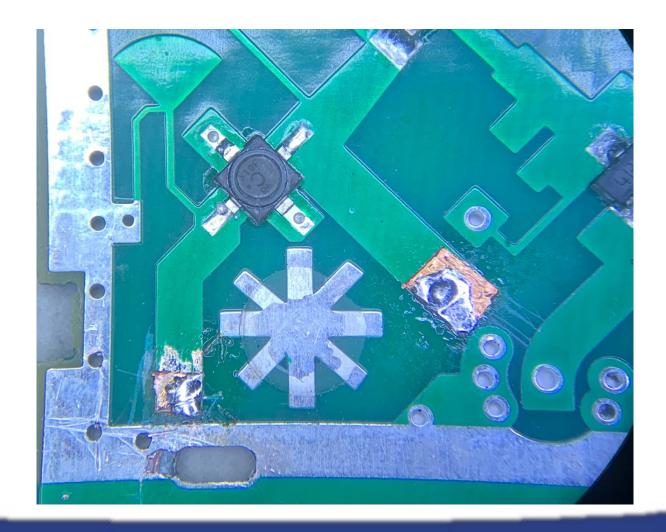
Signal + Spur

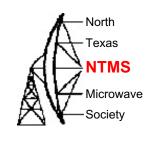
Spur ~ 9.68 GHz 20 DB down



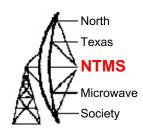
WWW.NTMS.ORG

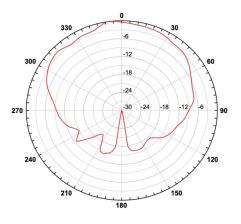

17

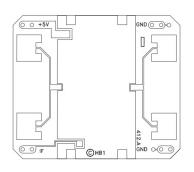

Adding copper to stub

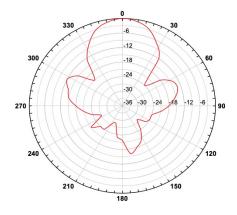


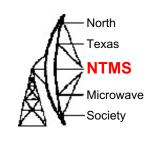
Copper added to stubs

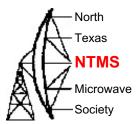



Adjusted Frequency



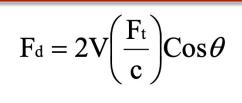

TX or RX Antenna Pattern


Azimuth


Flevation

Regulation Info from Ap Note

Frequency	Country	Remark
9.35 GHz	Germany	
9.9 GHz	France, Italy	
10.525 GHz	USA, Belgium, Netherlands	
10.587 GHz	UK	Outdoor applications
10.687 GHz	UK	Indoor applications


The Math

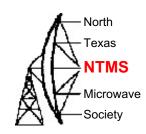
Cos θ gives you the vector moving straight at sensor. θ =0 Yields 100% of energy.

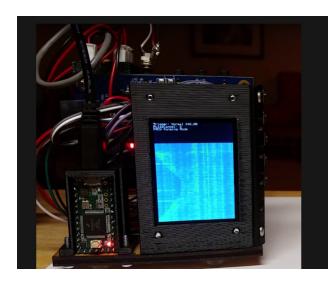
2V is covering both out to target and back.

Doppler will the the ration of OSC Frequency and the speed of light.

Where

 F_d = Doppler frequency


V = Velocity of the target


 $F_t = Transmit frequency$

 $c = Speed of light (3 X 10^8 m/sec)$

 θ = The angle between the target moving direction and the axis of the module.

Hackaday Has a Product on the way.

DESCRIPTION

Inspired by the work of Gregory Charvat (http://hackaday.com/2014/02/24/guest-post-try-radar-for-your-next-project/) (http://hackaday.com/2014/03/17/radar-imaging-in-your-garage-synthetic-aperture-radar/) I decided to build my own FMCW ranging radar.

Since the coffee can thing had already been done I challenged my self to extra low cost. Using an HB100, teensy 3.2 and ADAU1761 I've built a functioning FMCW ranging radar.

More details to come...

ENJOY THIS PROJECT?