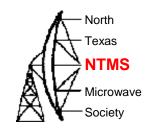
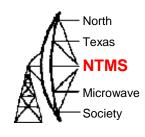


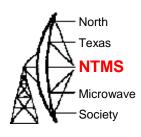
Microwave Update
Oct 4, 2024
Vancouver, B.C.


North Texas

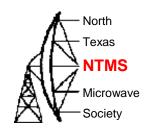
- We don't have:
 - Mountains with accessible vista pull outs
 - Bodies of water more than a few miles long
- We do have:
 - One hill with a view to the area below that is 10 degrees wide and faces West where no one on microwave lives ©
 - Tall buildings and less taller water towers in Dallas Fort Worth metro area
 - Flat areas that have breaks in the trees.
 - Terrain that falls away slowly for miles
 - Proximity to huge rainstorm cells
 - LOTS of wide-bodied jets from local metro airports
- Does this sound like your area? What parts do you have and not have?



Hope is not lost


- Smaller bodies of water are usable as a DX path at very high frequencies (122 GHz) see NTMS paper "Conquering Lake Lavon"
- The one hill Cedar Hill has been used to achieve:
 - 122 GHz DX of 17 km
 - Laser 2-way contact of 27 km
- Cedar Hill has 12 towers used successfully at 10 & 24 GHz for tower bounce (< 50 km DX) when direct path was blocked
- Water towers have provided interesting experiments if you are LOS
- Tall buildings have enabled 10 & 24 GHz contacts otherwise not possible.
- Normal good DX via rain scatter (like other North America areas)

Rover Reality


- In general, the rover will be in the sticks.
- The rover will operate from virtually ground level.
- The rover will usually be alone with few exceptions.
- The rover cannot see (is not LOS) to a water tower or tall building.
- The rover will attempt a contact with a fixed station equipped with a dish on a tower.
- The rover will attempt a contact with another rover or a portable.
- The rover will face distraction by passers by, farm animals and insects.
- To avoid frustration, the rover needs to have a clear plan.

The Plan (do the homework)

- Location, location
- High ground, falling away terrain in the path of the signal
- Very little or no foliage for first 1000 meters
- Verify access to the location
 - Is it located on a right-of-way?
 - Is there automobile traffic?
 - Light versus heavy (be aware of 24 GHz QRM)
 - Are you prepared to meet the land owner?

Pointing accuracy

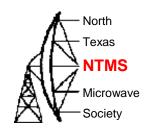
- Dish 3 dB beamwidth:
 - $\theta \approx 70 * (\lambda / D)$
 - 24 GHz dish = 76 cm so $\theta \approx 70$ * (1.2 cm / 76 cm) so $\theta \approx 1.1$ °
 - 47 GHz dish = 45 cm so $\theta \approx 70$ * (.6 cm / 45 cm) so $\theta \approx .9$ °
 - SohCahToa solve for Opp call it HWD half beam width distance
 - At 30 km the 3 dB beamwidth is:

```
tan(0.55°) = HWD/30 km

rearrange: HWD = tan(0.55°) x 30 km

HWD = .0096 x 30 km = .288 km

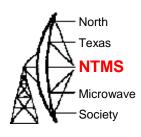
288 m

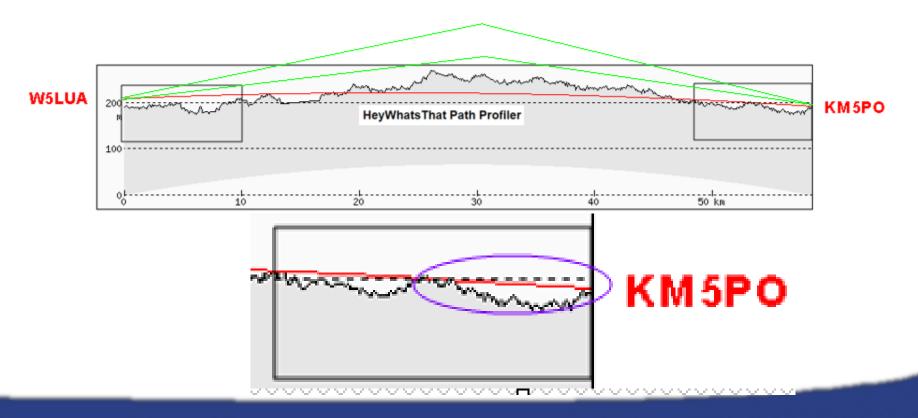

In this calc, at 30 Km the 3dB width of signal is ~ 1/2 km

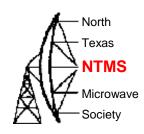
half BW=.55°

half BW=.55°
```

More to scale:


Pointing accurately - K7FRY

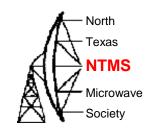

- K7FRY.com accepts a single or double set of grids (up to 10 characters)
 - This is your <u>primary trusted data</u>. From this you will extract landmark(s).
 - Bearing is displayed by this tool as 264.87 degrees, say 265 <u>TRUE</u>


Pointing accurately - Terrain

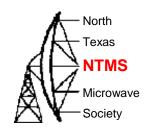
- Note that there is good "takeoff" on both ends
- Terrain is falling away fast on the rover side making the landmark appear more distant or slightly below the near horizon

Pointing accurately - Landmark

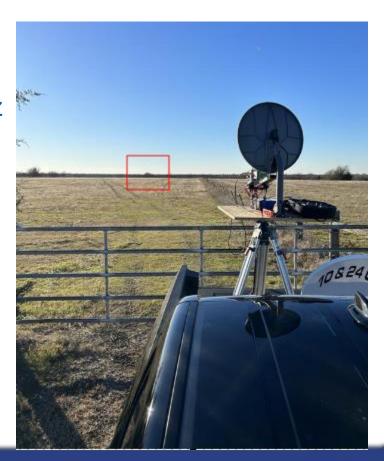
- Set a very accurate line in Google from your location to target
- Correlate street view to K7FRY to locate suitable landmark


Google's street view after setting route line from your location to the target

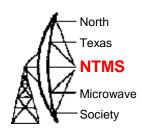
 $\mathsf{WWW}_{\mathsf{L}}\mathsf{NTMS}$


Pointing accurately - Landmark

Use Google maps to tilt view to verify landmark(s)

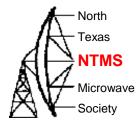


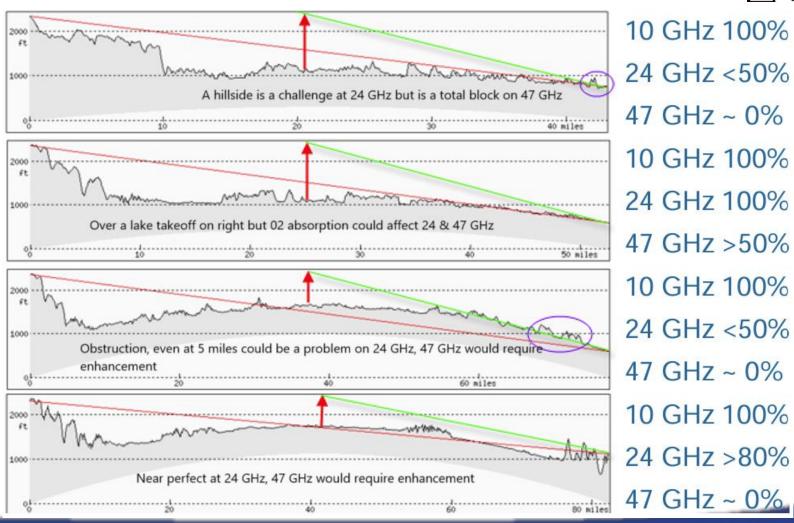
Pointing accurately - Landmark

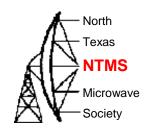


Find landmark when you go to location

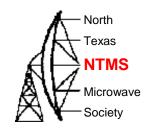
This resulted in a successful 47 GHz qso at 60 km.
Signals were 569

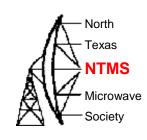


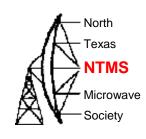

Theodite phone app

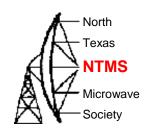


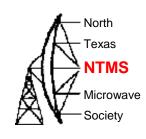
- Theodite iphone app game changer
- Combines augmented reality for measurement, bearings (True and Magnetic) plus GPS/Grid, maps, 2 axis inclinometer.
- The "RED DOT" is your friend (and target for aiming).
- View through camera can be zoomed to 4 x.

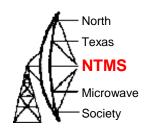


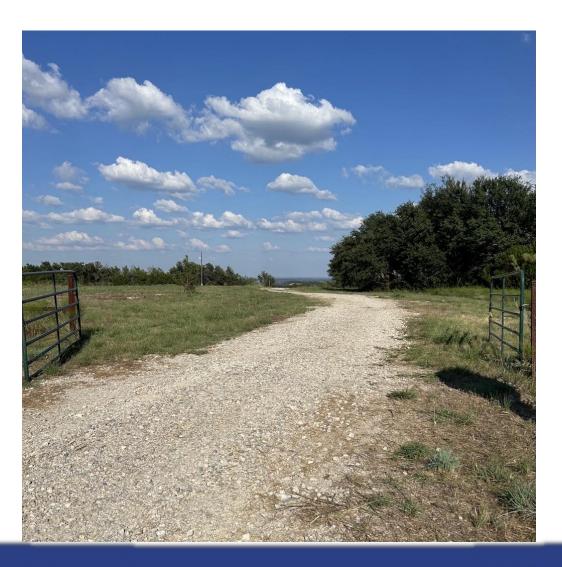


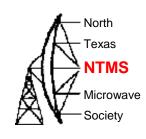


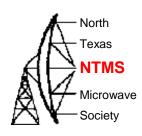




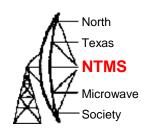


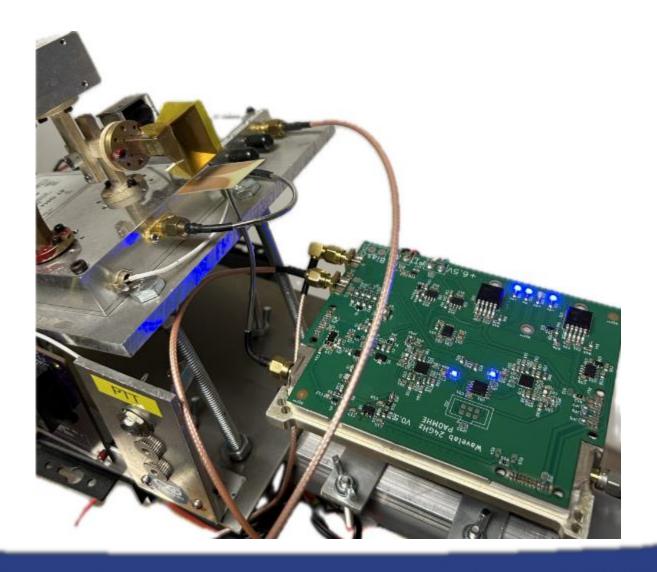


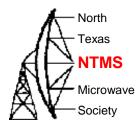


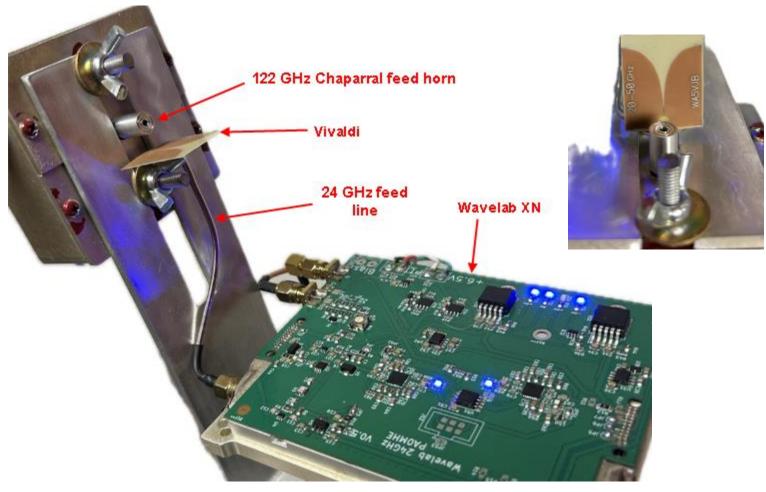


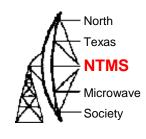
Steps to success


- Review location and pick landmarks via K7FRY
- Review path profile in heywhatsthat profiler
- Find landmarks in Google street view
- Elevate the google route view of landmark
- Does all data correlate?
- Place your target in Theodite and use the red dot when on site
- Be prepared to use a compass with deviation correction if your other technology fails.


24/47/122 GHz Rover operation

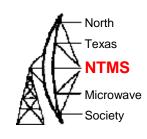

- 10/24 dual band feeds
 - Peak on 10, switch to 24
 - Peaking by finding the first null on both sides then split the angle
- Separate 10 & 24 & 122 dishes parallel edges!
- 24/47 and 24/122 feeds on same offset dish
 - Peak on 24, switch to 47 or 122.
 - Best if 24 GHz signal is weak!
 - Use a closely mounted (24 GHz) Vivaldi in horizontal polarization next to 47 GHz feed. Integrate Wavelab XN low cost module for 24 GHz receive only.

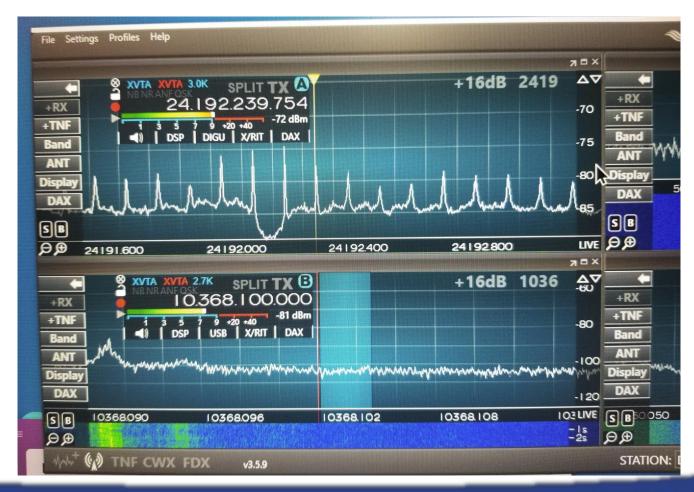

24 GHz used with 47 GHz



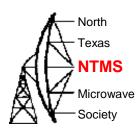
24 GHz used with 122 GHz

24 GHz QRM


- 24 (24.050 24.250) GHz is shared with:
 - Part 15 "RF Devices" Field Disturbance Sensor
 - Part 18 "ISM Equipment"
 - Part 90 "Private Land Mobile"


eCFR :: 47 CFR Part 15 -- Radio Frequency Devices

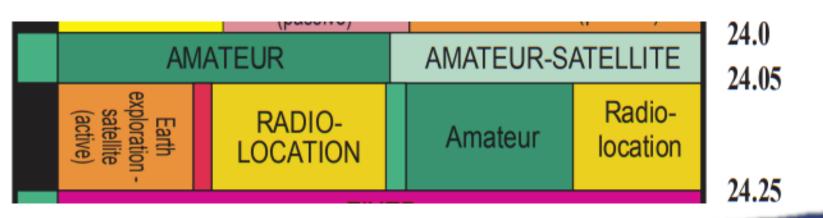
eCFR:: 47 CFR Part 18 -- Industrial, Scientific, and Medical Equipment

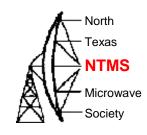

eCFR :: 47 CFR Part 90 -- Private Land Mobile Radio Services

QRM at W5LUA looking 38 degrees

The 24 GHz Dir Find team

Matthew Kube W5ZCA and Richard Burger AG5XW

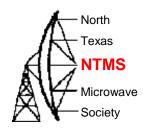

24 GHz Wavelab sniffer in foreground


North Texas NTMS Microwave Society

Shared 24 GHz spectrum

Table of Frequency Allocations	le of Frequency Allocations 18.6-24.45 GHz (SHF)			
	International Table	United States Table		FCC Rule Part(s)
24-24.05 AMATEUR AMATEUR-SATELLITE	·	24-24.05		ISM Equipment (18) Amateur Radio (97)
5.150 24.05-24.25 RADIOLOCATION Amateur Earth exploration-satellite (active)		5.150 US211 24.05-24.25 RADIOLOCATION G59 Earth exploration-satellite (active)	Earth exploration-satellite (active) Radiolocation	RF Devices (15) ISM Equipment (18) Private Land Mobile (90)
5.150		5.150	5.150	Amateur Radio (97)

Signal identification


"The" reference for signals is- but lacks the higher bands.. https://www.sigidwiki.com/wiki/Signal_Identification_Guide

From the reference signal page above, this modulation sounds close to what we heard in Al Ward's case: OTH-SW Chinese over the horizon radar https://www.sigidwiki.com/wiki/Special:RunQuery/Database

The Gov/FCC frequency allocation schedule https://transition.fcc.gov/oet/spectrum/table/fcctable.pdf

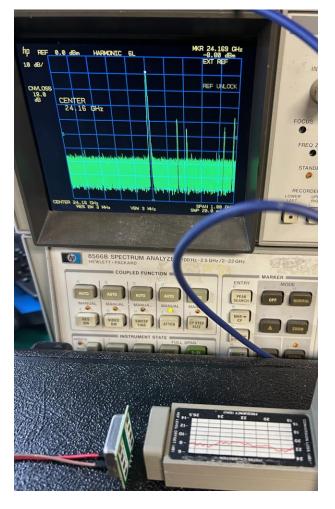
Gov/FCC colored wall chart https://www.ntia.gov/page/united-states-frequency-allocation-chart

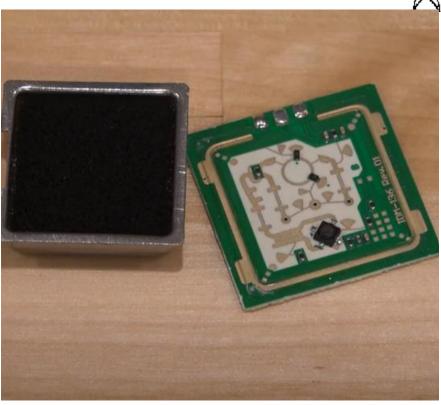
Two DUTs

Two common 24 GHz "human presence" radar units were tested.

DfRobot SEN0395

CDM 324

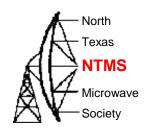


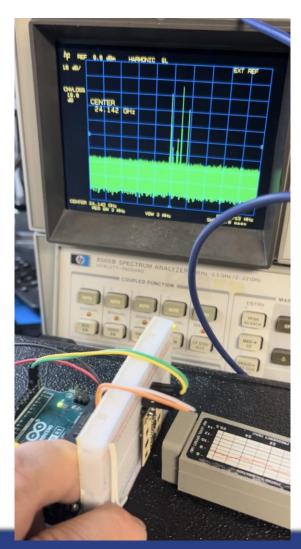


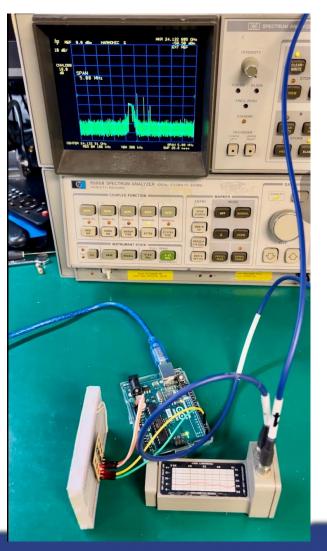
Parameterl	Value	
Freq	24.125-24.250	
Oper V	3.6-5v	
Oper Cur	90 mA	
Modulation	FMCW,CW	
Pwr output	13-15 dBm	
IF	uProc serial	

Parameter	Value		
Freq	24.125-24.250		
Oper V	5.5v		
Oper Cur	30 mA		
Modulation	CW pulse		
Pwr output	16 dBm		
IF	-300 to +300 mV		

CDM 324

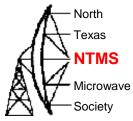


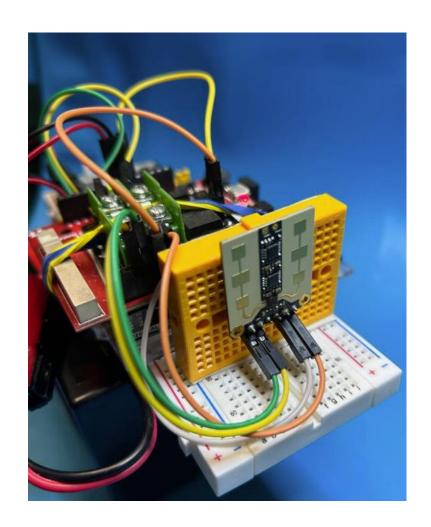

NTMS

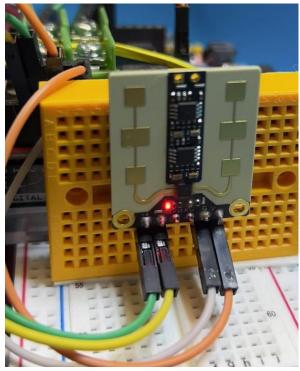

Microwave
Society

https://www.youtube.com/watch?v=5vqSX4 0seqA&t=173s

DfRobot SEN0395

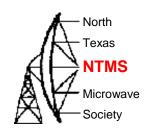


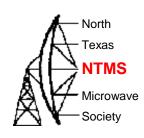


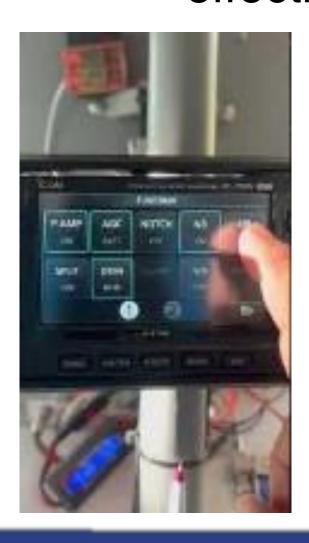

WWW.NTMS.ORG

32

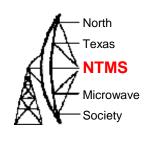
DfRobot SEN0395

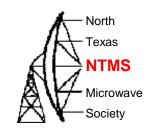


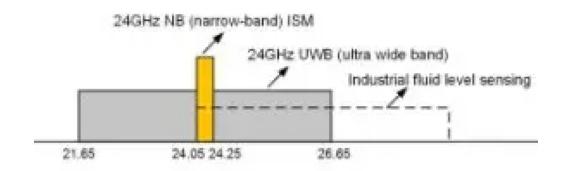

QRM generator remote controlled via Halogram cell connectivity

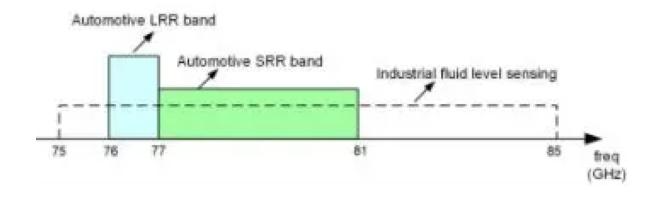

SEN0395 Wide Band signal

Noise blanker – Noise reducer effectivness

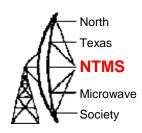


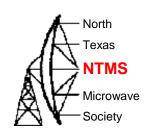



24 GHz QRM



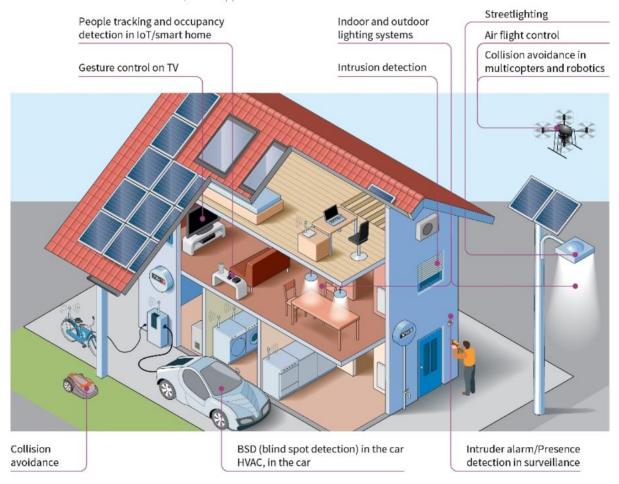
- What we know
 - 24 GHz proximity alert devices are showing up on the doorstep
 - 24 GHz and now 77 GHz is a multi billion dollar industry in the ADAS sector alone
 - 24 GHz also includes the ISM band from 24.0 to 24.250 (TI calls this the "narrow band")
 - 24 GHz includes an ultra wide band which is 5 GHz wide


24 GHz QRM

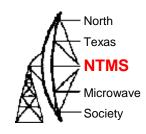

Infineon standardizing the API

Benefits of Ripple™

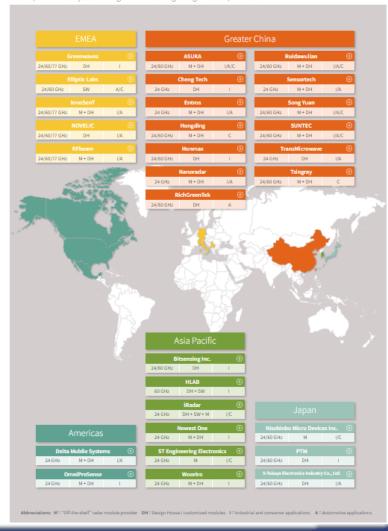
Some uses (from Infineon)

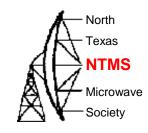


Applications

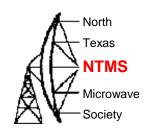

North Texas NTMS Microwave Society

Applications


24GHz Radar Sensor ICs for industrial/home applications


Just a few of the vendors

Radar partner ecosystem at a glance including design house partners

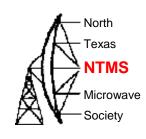


Few more vendors

Manufacturer	Part	Freq	Output
Infineon Technologies	BGT24ATR11	24.0-24.25 GHz	11 dBm
Analog Devices	ADF5901	24.0-24.25 GHz	8 dBm
STMicroelectronics	STRADA431	24.0-24.25 GHz	13 dBm
AutoLiv	Various	24.5 but 1GHz UWB	10 dBm
Calterah Semiconductor	Various	Moving to 60/77 GHz for "\$10B" market - 2024	

24 GHz QRM

References:


Texas Instruments (above 24 GHz) <u>Automotive mmWave radar sensors | TI.com</u>

Analog Devices (ADF5901) <u>ADF5901 Datasheet and Product Info | Analog Devices</u>

Infineon <u>24GHz radar sensors - Infineon Technologies</u>

DfRobot mmWave Radar - 24GHz Human Presence Detection Sensor (9 Meters) - DFRobot

Questions?

